Заземление

Изобретение бездымного пороха. Бездымный порох менделеева. Появление и развитие бездымных порохов

Вопреки распространенному мнению, порох - не взрывчатка. Порох - топливо. Он может взорваться при неправильном обращении, может взорваться, если его «очень попросят», может взорваться без вмешательства извне, если слишком далеко зашли процессы деструкции, распада. Взрывчаты и некоторые компоненты порохов. И все-таки порох - топливо. Ради горения, а не взрыва его придумывали. Но порох -топливо особое. В отличие от большинства веществ, для горения ему не нужен воздух. Порох любого состава и марки сгорает «за счет внутренних ресурсов» - кислорода, входящего в состав пороховой композиции.

Пороходелие - одно из самых старых химических производств, существующих на нашей планете. Еще за несколько столетий до наступления нашей эры китайцы обнаружили способность селитры поддерживать горение различных веществ и стали подбирать разные горючие композиции с нею. Методом проб и ошибок они пришли к классической рецептуре черного пороха: уголь, селитра и сера в равных пропорциях. Состав и рецепт приготовления пороха китайский ученый Сунь-Сымяо описал еще в 600 г. н. э. А спустя полтысячелетия в Китае же было сделано первое огнестрельное оружие. Полый ствол бамбука стал стволом первого ружья, а метательным составом, естественно, был черный порох.

Позже это изобретение распространилось по миру. В средневековой Европе, как считают большинство историков, порох изобрели заново. Указывается даже имя этого новооткрывателя фрейбургского монаха Бертольда Шварца, «черного Бертольда». Но сведения о нем противоречивы. По одним данным (не очень достоверным) дата изобретения пороха в Европе 1259 г., по другим - чуть ли не на сто лет позже, а по третьим Бертольда Шварца вообще нельзя считать изобретателем пороха, ибо еще раньше, до Шварца, Роджер Бэкон разработал формулу взрывчатого вещества, в которое входили селитра и сера. Может быть, это и был первый европейский порох.

Московская Русь познакомилась с порохом в XIV в.- определенно, до 1382 г., потому что известно из летописей: в этом году москвичи обороняли свой город от войска татарского хана Тохтамыша с помощью и огнестрельного оружия...

У черного пороха долгая история. Им заряжали все пищали и мортиры, все мушкеты и кремневые ружья, а позже, вплоть до последних лет XIX столетия, - и более совершенные средства для стрельбы.

Многие известные ученые занимались исследованием и совершенствованием черного пороха. Достаточно вспомнить Ломоносова, установившего рациональное соотношение компонентов пороховой смеси. Можно вспомнить и о неудачной попытке Клода Луи Бертоле заменить в составе пороха дефицитную селитру бертолетовой солью - хлоратом калия. Многочисленные взрывы встали на пути этой замены - слишком активным окислителем оказалась бертолетова соль...

Одной из самых заметных вех в истории пороходелия следует считать 1832 г., когда французским химиком А. Браконо впервые была получена нитроклетчатка, или пироксилин.

Нитроклетчатка - это эфир целлюлозы и азотной кислоты. Молекула целлюлозы содержит большое число гидроксильных групп, которые и реагируют с азотной кислотой.

В зависимости от того, сколько групп OH этерефицировано, т. е. вступило в реакцию с азотной кислотой, получается нитроцеллюлоза, содержащая от 9 до 14% азота, а от этого зависят и свойства нитроцеллюлозы, ее гигроскопичность и растворимость в разных растворителях. Низконитрованная целлюлоза - коллоксилин - растворяется даже в воде, а высоконитрованная, которая называется пироксилином, растворяется только в смеси этанола и эфира.

Свойства пироксилина исследовали многие ученые. В частности, к концу 1848 г. русские инженеры Г. И. Гесс и А. А. Фадеев установили, что по мощности пироксилин в несколько раз превосходит черный порох. Пироксилин пытались применять для стрельбы, но неудачно. Рыхлая пористая нитроцеллюлоза была неоднородна и горела с далеко не постоянной скоростью, а при прессовании часто возгоралась. Лишь в 1884 г. французский химик Ж. Вьель сумел создать монолитное рогоподобное вещество на основе пироксилина. Это был первый бездымный порох. Вьель использовал для получения пороха способность пироксилина набухать в смеси эфира и спирта. При этом получалась студкеподобная масса, которую можно было прессовать и делать из нее ленты или пластины, которые затем сушили. Большая часть растворителя улетучивалась, а меньшая - оставалась в пироксилине, продолжая играть роль пластификатора. Пироксилиновый порох почти целиком, на 80-95%, состоит из этой массы. В отличие от непластифицированного пироксилина пироксилиновый порох сгорает строго по слоям с постоянной скоростью. Строго закономерное горение - обязательное свойство любого из порохов. Пироксилиновый порох до сих пор применяют для стрелкового оружия.

Вскоре появился и другой бездымный порох - нитроглицериновый, он же баллистит. Его основой тоже служила нитроцеллюлоза, хотя ее количество в рецептуре и было уменьшено до 56-57%. Пластификатором здесь служит жидкое взрывчатое вещество тринитроглицерин (о нем - самостоятельный очерк). Такой порох обладает большой силой, его до сих пор применяют в артиллерии и ракетных войсках.

Третьим типом бездымного пороха стал изобретенный в 1889 г. в Англии кордит - среднее между баллиститом и пироксилиновым порохом; он почти вышел из употребления.

В начале девяностых годов своя рецептура бездымного пороха была разработана и в России. Это пироколлодийный порох Менделеева.

Пороходелию, как области химических знаний, Менделеев уделил много сил и внимания в 1890-1894 годах. Он ездил во Францию и Англию, знакомился с постановкой порохового дела; он встречался с Вьелем, Абелем, Дьюаром, Арну, Сарро и другими ведущими учеными-пороховиками того времени. Он нашел способ получения растворимой нитроклетчатки - пироколлодия, причем в своих изысканиях он исходил из очень определенной и химически строго обоснованной идеи: искомое вещество при горении должно выделять максимум газообразных продуктов на единицу массы. Это значит, что кислорода в его составе должно быть достаточно для превращения всего углерода в газообразную окись, а водорода - в воду.

Уже в 1892 г. были проведены первые опытные стрельбы пироколлодийным порохом. Стрельбы прошли успешно. Через год впервые в России бездымным порохом стреляли из 12-дюймового орудия, и инспектор морской артиллерии адмирал С. О. Макаров поздравлял Менделеева с блестящим успехом.

Менделеев «считал свое дело законченным с того времени, когда пироколлодийный порох выдержал опыты морского полигона в орудиях всех калибров». Но этим не ограничиваются заслуги великого ученого перед пороховым производством и военным делом. В технологию производства пороха он внес очень важное усовершенствование, предложив вместо сушки нитроклетчатки обезвоживание ее с помощью спирта. Это усовершенствование не только сделало пороховое производство безопаснее, но и улучшило качество нитроклетчатки: спирт вымывал из нее менее стойкие продукты...

Здесь мы коснулись очень важного вопроса - вопроса временной и физико-химической стойкости бездымных порохов. Даже при нормальной температуре нитроцеллюлоза самопроизвольно разлагается. С ростом температуры растет и скорость распада. Почти все загрязнения, и в частности остатки кислот, недовымытые из нитроклетчатки после нитрации, намного ускоряют разложение, причем процесс этот - самоускоряющийся... При неблагоприятных условиях этот нарастающий распад может привести к самовоспламенению пороха и даже к взрыву.

Чтобы этого не случилось, чтобы повысить стойкость бездымных порохов, в их состав вводят стабилизаторы - вещества, связывающие продукты разложения и тем самым не дающие развиваться цепной реакции распада. Такими веществами-стабилизаторами служат некоторые производные карбамида (мочевины), так называемые центролиты, и дифениламин.

Вводят в состав порохов и другие добавки всевозможного назначения. В лабораториях химики, используя точнейшие аналитические весы постоянно совершенствуют состав пороха. Например, чтобы уменьшить пламя при выстреле, в порох вводят сульфат калия. В артиллерийские пороха добавляют вещества, уменьшающие теплоту сгорания, например динитротолуол. Делают это, чтобы уменьшить износ стволов или разгар, как говорят артиллеристы. Есть добавки и чисто технологические. Зерненый порох, к примеру, покрывают тонким слоем графита - чтобы при перемешивании он не электризовался. Словом, бездымный порох - это многокомпонентная строго сбалансированная система. Составляя этот баланс, учитывают все: и баллистику, и технологию, и технику безопасности, и экономику.

Сегодня порох - не только горючее артиллерии, но и твердое ракетное топливо (ТРТ).

Твердое топливо уступает жидкому по некоторым важным показателям, прежде всего по удельному импульсу. Поэтому, в частности, на космических ракетах используют в основном жидкое топливо. Но у ТРТ есть и преимущества, главные из которых- простота устройства твердотопливного реактивного двигателя и постоянная боевая готовность твердотопливных ракет.

Из бездымных порохов для изготовления больших пороховых шашек для ракет используют баллисты. Пороха, в состав которых входит нитроглицерин, дают больше тепла при сгорании. Удельный импульс их выше, чем у пироксилиновых порохов. Немаловажно и то обстоятельство, что в наши дни баллиститные пороха дешевле пироксилиновых.

Порох – это неотъемлемая часть любого патрона. Без пороха не было бы огнестрельного оружия, но мало кому известно, что порох был изобретён случайно и долгое время использовался лишь для фейерверков. Порох — многокомпонентное вещество, секрет изготовления которого был открыт совершенно случайно.

Изобретение пороха

Дымный порох, который ещё называется черный порох, был изобретён в Китае, приблизительно в 8 веке нашей эры. В те времена китайские императоры очень заботились о своём здоровье и всячески поощряли местных алхимиков в надежде, что те, если и не откроют эликсир бессмертия, то хотя бы изобретут настойку долголетия. Гонимые во все времена и приравненные к колдунам, местные химики неожиданно получили императорское разрешение на занятие своими нелёгкими трудами. Наиболее известные даже смогли получить полное финансирование своих опытов.

Эликсира бессмертия никогда не существовало, но упорные китайцы старательно смешивали различные вещества, в надежде его получить. В те времена не существовало отдельно химиков и фармацевтов. Часто в процессе испытаний происходили неприятные инциденты.

Однажды, смешав уголь, селитру и какие-то другие ингредиенты, неизвестный алхимик получил первый дымный порох. Испытывая новое вещество сочетанием «огонь и порох», он получил дым и пламя. История умалчивает, до чего довели его эксперименты, возможно, ему удалось даже устроить взрыв, но так или иначе, формула была записана и попала в китайскую летопись.

Долгое время дымный порох использовался лишь для фейерверков, пока китайцы не стабилизировали формулу и не научились его взрывать. В 11 веке изобрели первое пороховое оружие – боевые ракеты, где происходило не просто сгорание пороха, а его взрыв. Такие ракеты использовались при осадах крепостей, хотя эффектный взрыв пороха оказывал больше психологическое действие. Самое мощное оружие с использованием пороха, до которого смогли додуматься китайцы в те времена – это ручные глиняные бомбы, которые могли взорваться и осыпать всё вокруг осколками глиняных черепков.

Дымный порох, покорение Европы

Порох в Европе появился примерно в 11веке. Его завезли арабские купцы в ракетах для фейерверков. Боевое применение пороха продемонстрировали монголы, с успехом применяя дымный порох для взятия ранее неприступных рыцарских замков. Технология применения была очень простая. Под стену делался подкоп (часто стены возводились на каменистых утёсах, где можно было не бояться, что враги сумеют глубоко подкопаться под стену), закладывалась большая пороховая мина, и взрыв пороха за несколько секунд пробивал в стене брешь.

Первые пушки, использующие взрывчатый порох, появились в Европе в 1118 году, когда арабы захватывали Испанию. А в 1308 году перенявшие эффективные пушки от арабов испанцы взяли Гибралтарскую крепость. После этого пушки стали изготавливаться по всей Европе, не исключая и Россию. Так как технологии того времени ещё не знали литья цельных стволов пушек, артиллерия была громоздкая и использовалась только для захвата крепостей и обстрела городов.

Виды пороха

Охотничий порох бывает двух видов, которые подразделяются на сорта по качеству изготовления:

  1. Дымный порох;
  2. Бездымный порох.

Дымный порох – это прямой потомок древнего китайского изобретения, которым до сих пор пользуются современные охотники. Все дымные пороха для охоты делятся на сорта (высший и первый) и номера (от 1 до 4).

Номера пороха напрямую зависят от размера пороховых зёрен. Чем меньше зёрна, тем лучше будет взрываться порох, выталкивая пулю из ствола. Мелкие зёрна более плотно прилегают друг к другу, поэтому горение пороха происходит быстрее. Таким образом, если вам нужна большая начальная скорость полёта пули, используйте порох более высокого номера.

Определение качества дымного пороха

Чтобы определить, какой порох выбрать, недостаточно просто посмотреть на его сорт и номер. Современное производство – налаженный заводской процесс, в котором иногда случаются производственные браки.

Хороший порох должен обладать следующими свойствами:

  • Однотонный чёрный цвет;
  • Отсутствие белых или желтоватых оттенков;
  • Блестящая поверхность пороховых зёрен;
  • Если на зерно надавить, оно должно расколоться на части, а не превратиться в порошок.

Дымный порох при надлежащих условиях хранения способен сохранять свои свойства в течение десятилетий, но если в него попадёт вода – он придёт в негодность.

Несмотря на заметные достоинства, дымный порох — это пережиток прошлого, и он имеет множество недостатков:

  • После его применения в стволе ружья остаётся множество нагара, если его не прочищать, то можно забыть про меткую стрельбу;
  • Выстрел ружья, порох в патроне которого дымный, слышно за несколько километров. Это гарантированно разгонит всю окрестную дичь (патроны с бездымным порохом стреляют намного тише);
  • После выстрела выделяется столько дыма, что наблюдать за дичью очень сложно, что при охоте на крупного зверя очень опасно.

При выборе дымного пороха следует обращать внимание на отсутствие в нём посторонних примесей. Такой заряд пороха способен разорвать ствол ружья при выстреле. Использование дымного пороха оправдано лишь в одной ситуации – если у вас старое ружьё, которое не рассчитано на применение бездымного пороха, который может легко разорвать ствол, не приспособленный к таким нагрузкам.

Отличия и свойства бездымного пороха

Изготовление бездымного пороха значительно отличается от технологии производства дымного. Хотя цена бездымного пороха выше, его мощность превышает мощность дымного в три раза, поэтому благодаря меньшему количеству пороха в патроне можно сэкономить. Использование бездымного пороха открывает массу преимуществ:

  • Мощность, что сокращает количество раненых животных, так как ружьё бьёт дальше и сильнее;
  • Отсутствие «дымовой завесы» при выстреле;
  • Сравнительная чистота ствола ружья после выстрелов;
  • Менее громкий звук выстрела.

Помимо этого, если бездымный порох намокнет, его можно высушить, причём все его свойства сохранятся.

Минусы бездымного пороха заключаются в том, что сроки его хранения не превышают 15 лет, а сам он очень чувствителен к резким температурным перепадам. Несмотря на эти недостатки, всё больше охотников выбирают именно бездымные виды пороха.

Характеристики порохов, порох Сунар

Состав пороха Сунар отличается применением пироксилина с наличием графита, который необходим во избежание электризации. Выпускается в форме цилиндров или пластинок, является бездымным видом пороха. В России наиболее часто встречается именно в виде цилиндров, что даёт преимущество над пластинками, которое выражается в лучшем разгоне заряда. По скорости горения порох Сунар делится на три вида:

  1. Медленно горящие виды (например, Сунар «Магнум»);
  2. Горящие со средней скоростью (Сунар Н);
  3. Быстрогорящие виды (Сунар СВ).

Порох Сунар чаще всего используется для снаряжения патронов стендовой стрельбы. Охотниками он признан неудовлетворительным.

Порох Барс и его характеристики

Порох Барс относится к бездымным видам пороха. История его появления уходит ещё в 70-е годы. До сих пор порох Барс применяется множеством охотников по всей России и СНГ. По поводу его разработок до сих пор ходят споры. Основными версиями являются две:

  1. Данный порох был разработан как смена устаревшему пороху Сокол, и является порохом, разработанным исключительно для охотников;
  2. Сторонники второй версии утверждают, что порох Барс – это порох, используемый для автоматов, с небольшими изменениями. Советская промышленность пошла на этот шаг, чтобы минимизировать затраты. В результате чего и появился порох Барс. Знатоки свойств пороха для автоматов утверждают, что такой порох абсолютно непригоден для охотничьих ружей, так как разорвёт их стволы.

Тем не менее, эффективность этого пороха доказана десятилетиями. Несмотря на то, что его уже не производят, многие охотники в 90-е годы успели запастись им в огромных количествах и до сих пор используют только его.

Главным плюсом пороха этой марки является его плотный состав, что позволяет снизить вес пороха в патроне. К тому же производственная технология порохов этого вида достаточно простая, что позволяло существенно снизить его цену.

Главным недостатком пороха Барс является более высокая температура его сгорания, что может привести к ускоренному износу ружья.

Порох Сокол, старейший порох России

Порох Сокол применяется для снаряжения охотничьих патронов с 1937 года. Следует знать, что его состав менялся в 1977 году, так как требования к пороху стали более строгими. Энергия пороха этой марки достаточно велика, что позволяет ему до сих пор соответствовать всем мировым стандартам.

Порох Сокол может простить ошибку с навеской, поэтому рекомендуется для начинающих охотников, которые предпочитают снаряжать свои патроны самостоятельно.

Порох Сокол используют многие отечественные производители патронов («Азот», «Феттер» «Полиэкс» и прочие).

Порох Ирбис, особенности

Порох марки Ирбис отличается большим количеством модификаций, разделяемых по следующим признакам:

  • Соотношение массы пороха с массой пули (рекомендуемые параметры);
  • Калибр патронов, в которые будет насыпан этот порох;
  • Параметры совместимости с пыжами различных видов;
  • Параметры дульного давления.

Исходя из этих признаков, завод изготовитель рекомендует добавлять порох в строгом соответствии с таблицей, указанной на упаковке. Параметры данной таблицы иногда не совпадают с рекомендациями опытных охотников, которые дают советы, исходя из личного опыта. Хотя новичкам, которые не понимают, что за вещество порох и как его правильно использовать, лучше придерживаться заводских рекомендаций.

Алюминиевый порох, что это такое?

Некоторые утверждают, что алюминиевый порох – это новый вид, пришедший на смену традиционным видам пороха. На самом деле алюминиевый порох — это вещество, которое является скорее горючей смесью и используется в бенгальских огнях, фонтанах и фейерверках.

Горит этот вид ослепительным белым пламенем с более высокой температурой и скоростью, чем традиционный порох. Часто из него изготавливают специальные зажигательные трубки, способные зажечь трудно воспламеняемые вещества.

Снаряжение патронов Магнум

Патроны типа Магнум давно уже оценили зарубежные охотники за их выдающиеся характеристики в плане мощности. Отечественные охотники опасались использовать их в старых ружьях, но с появлением более современных моделей оружия, ориентированных на патроны типа Магнум, тоже смогли оценить их достоинства.

Преимущества патронов Магнум очевидны. Они обеспечивают резкий и точный бой на длинные дистанции. Главным условием для их использования является наличие надёжного и достаточно тяжёлого ружья.

Отечественные охотники применяют патроны Магнум для оружия калибра 12/76. Перед тем, как начать снаряжение или использование данных патронов, нужно убедиться, что ваше ружье рассчитано на патроны такого типа. По причине большой мощности, патроны Магнум требуют чёткого соблюдения технического процесса снаряжения патронов.

Меры предосторожности при работе с порохом

Прежде чем начать работы по снаряжению любых патронов, нужно узнать, какой тип пороха вам подходит. Большинство современных ружей могут оснащаться патронами с бездымным порохом, но если у вас старое или коллекционное оружие, лучше убедитесь в его пригодности для такого типа пороха. Не стоит проводить «полевые» испытания, выдержав несколько выстрелов, ружьё может разорваться у вас в руках в самый неожиданный момент, нанеся серьёзные травмы или даже увечья.

Снаряжая патроны, не стоит отвлекаться, курить или разговаривать с другими людьми по пустякам. Ошибка в расчётах может очень дорого вам обойтись при выстреле. При недостатке пороха в патроне пуля не сможет уложить крупного зверя, который легко вас покалечит. Чрезмерное количество пороха в лучшем случае выведет из строя ружьё, в худшем –разорвёт.

Вокруг бездымного пороха

Человек живет поисками.
Роберт Вальзер

Речь пойдет не о тех людях, судьба которых оказалась связанной с применением огнестрельного оружия, а о тех, кто создавал порох и искал новые области его применения.

Древнейшее изобретение

Вначале воздадим должное предшественнику бездымного пороха – его дымному «собрату». Дымный порох (его также называют черным) представляет собой тщательно перемешанную смесь калийной селитры KNO 3 , древесного угля и серы. Главное достоинство пороха состоит в том, что он может гореть без доступа воздуха. Горючие вещества – уголь и сера, а кислород, необходимый для горения, поставляет селитра. Другое важное свойство пороха – он образует при горении большое количество газов. Химическое уравнение горения пороха:

2KNO 3 + S + 3C = K 2 S + 3CO 2 + N 2 .

Первое упоминание о рецепте приготовления горючей смеси из селитры, серы и угля (полученного из бамбуковых опилок) встречается в древнем китайском трактате I в. н. э., в то время порох применяли для изготовления фейерверков. Широкое использование черного пороха как боевого взрывчатого вещества началось в Европе в конце XIII в. Горючие компоненты пороха уголь и сера были вполне доступны. Однако селитра являлась дефицитным продуктом, поскольку единственным источником нитрата калия KNO 3 служила так называемая калиевая или индийская селитра. В Европе природных источников калиевой селитры не было, ее привозили из Индии и использовали только для производства пороха. Поскольку пороха с каждым столетием требовалось все больше, а привозной селитры, к тому же очень дорогой, не хватало, был найден другой ее источник – гуано (от исп. guano ). Это разложившиеся естественным образом остатки помета птиц и летучих мышей, представляющие собой смесь кальциевых, натриевых и аммонийных солей фосфорной, азотной и некоторых органических кислот. Основная сложность в производстве пороха из такого сырья состояла в том, что гуано содержит не калиевую, а преимущественно натриевую селитру NaNO 3 . Ее нельзя использовать для изготовления пороха, поскольку она притягивает влагу, и такой порох быстро отсыревает. Для того чтобы превратить натриевую селитру в калиевую, использовали простую реакцию:

NaNO 3 + KCl = NaCl + KNO 3 .

Каждое из этих соединений растворимо в воде и не выпадает из реакционной смеси в осадок, поэтому полученный водный раствор содержит все четыре соединения. Тем не менее провести разделение возможно, если использовать различную растворимость соединений при повышении температуры. Растворимость NaCl в воде невелика и к тому же очень мало меняется с температурой, а растворимость KNO 3 в кипящей воде почти в 20 раз выше, чем в холодной. Поэтому смешивают насыщенные горячие водные растворы NaNO 3 и KCl, а затем смесь охлаждают, выпавший кристаллический осадок содержит достаточно чистый KNO 3 .

Однако не все проблемы были решены. Большинство составных частей гуано растворимы в воде и легко размываются дождями. Поэтому в Европе скопления гуано можно было найти только в пещерах, где ранее гнездились колонии птиц или летучих мышей. Пещеры, содержавшие скопления гуано, были найдены, например, в предгорьях Крыма, что позволило организовать небольшой пороховой завод на «пещерном сырье» в Севастополе во время англо-франко-русской войны 1854–1855 гг.

Естественно, все европейские запасы были невелики, и их быстро выработали. На выручку пришли громадные запасы гуано вдоль тихоокеанского побережья Южной Америки. Миллионные колонии птиц, питающихся рыбой, – чайки, бакланы, крачки, альбатросы – гнездились на скалистых берегах вдоль побережья Перу, Чили и на прибрежных островах (рис. 1). Поскольку в этом районе почти не бывает дождей, гуано накапливалось на побережье в течение многих веков, образовав в некоторых местах залежи толщиной в десятки метров и протяженностью свыше 100 км. Гуано представляло собой не только источник селитры, но и ценное удобрение, спрос на него постоянно возрастал. В результате в 1856 г. в США был даже принят специальный «Закон об островах гуано» (иногда его называют «Законом о гуано»). Согласно этому закону гуановые острова считались владением США, что содействовало ускоренному захвату таких островов и созданию контроля над источниками ценного ресурса.

Потребность в гуано достигла такого размаха, что в начале XX в. его экспорт составлял миллионы тонн, все разведанные запасы стали быстро истощаться. Возникла проблема, подобные которой химия всегда умела решать, был создан принципиально иной порох, для его изготовления селитра вообще не требовалась.

Все начиналось с полимеров

Человечество очень давно научилось использовать природные полимеры (хлопок, шерсть, шелк, шкуры животных). Формы получаемых изделий – волокна для изготовления тканей или пласты кожи – зависят от исходного материала. Чтобы изменить форму принципиально, необходимо было каким-либо способом химически модифицировать исходный материал. Именно целлюлоза открыла путь к подобным превращениям, что в конечном итоге привело к созданию химии полимеров. Из целлюлозы состоит хлопковая вата, древесина, льняные нити, пеньковые волокна и, естественно, бумага, которую изготавливают из древесины.

Полимерная цепь целлюлозы собрана из циклов, соединенных кислородными перемычками, внешне это напоминает бусы (рис. 2).

Поскольку в составе целлюлозы находится много гидроксильных НО-групп, именно их стали подвергать различным превращениям. Одна из первых удачных реакций – нитрование, т.е. введение нитрогрупп NO 2 действием на целлюлозу азотной кислоты HNO 3 (рис. 3).

Чтобы связать выделяющуюся воду и тем самым ускорить процесс, в реакционную смесь добавляют концентрированную серную кислоту. Если хлопковую вату обработать указанной смесью, а затем отмыть от следов кислот и высушить, то внешне она будет выглядеть точно так же, как исходная, но в отличие от натурального хлопка такая вата легко растворяется в органических растворителях, например в эфире. Это свойство было сразу же использовано, из нитроцеллюлозы стали изготавливать лаки – они образуют великолепную блестящую поверхность, легко поддающуюся полировке (нитролаки). Долгое время нитролаки применяли для покрытия кузовов автомобилей, сейчас их сменили акриловые лаки. Кстати, лак для ногтей тоже делают из нитроцеллюлозы.

Не менее интересно, что из нитроцеллюлозы была изготовлена первая в истории полимерной химии пластмасса. В 1870-е гг. на основе нитроцеллюлозы, смешанной с пластификатором камфорой, был впервые создан термопластик. Такому пластику придавали определенную форму при повышенной температуре и под давлением, а когда вещество остывало, заданная форма сохранялась. Пластик получил название целлулоид , из него стали делать первые фото- и кинопленки, бильярдные шары (заменив тем самым дорогую слоновую кость), а также различные бытовые предметы (расчески, игрушки, оправы для зеркал, очков и др.). Недостатком целлулоида было то, что он легко воспламенялся и очень быстро сгорал, причем остановить горение было почти невозможно. Поэтому целлулоид был постепенно вытеснен другими, менее пожароопасными полимерами. По этой же причине довольно быстро отказались от искусственного шелка из нитроцеллюлозы.

Популярный некогда целлулоид не забыт и сегодня. Известная рок-группа Tequilajazz выпустила альбом с названием «Целлулоид». В альбом вошли некоторые мелодии, написанные для фильмов, а слово «целлулоид» указывает на материал, из которого ранее делали кинопленку. Если бы авторы хотели дать более современное название альбому, то его следовало назвать «Ацетат целлюлозы», поскольку он менее пожароопасен и потому вытеснил целлулоид, а ультрасовременным названием было бы «Полиэфир», который начинает успешно конкурировать с ацетатом целлюлозы при изготовлении кинопленки.

Существуют изделия, где целлулоид применяют до сих пор, он оказался незаменим при изготовлении шариков для настольного тенниса; по мнению гитаристов, наилучший звук дают медиаторы (плектры) из целлулоида. Иллюзионисты используют небольшие палочки из этого материала, чтобы продемонстрировать яркое, быстро исчезающее пламя.

Горючесть нитроцеллюлозы, прервавшая ее «карьеру» в полимерных материалах, открыла широкую дорогу совсем в ином направлении.

Огонь без дыма

Еще в 1840-х гг. исследователи заметили, что при обработке древесины, картона и бумаги азотной кислотой образуются быстро сгорающие материалы, однако наиболее удачный способ получения нитроцеллюлозы был открыт случайно. В 1846 г. швейцарский химик К.Шонбейн во время работы пролил на стол концентрированную азотную кислоту и для ее удаления воспользовался хлопковой тряпкой, которую затем повесил сушиться. После высыхания ткань от поднесенного пламени мгновенно сгорела. Шонбейн более подробно изучил химию этого процесса. Именно он впервые решил добавлять при нитровании хлопка концентрированную серную кислоту. Нитроцеллюлоза горит очень эффектно. Если положить на ладонь клочок «нитрованной» ваты и поджечь, то вата сгорит столь быстро, что рука не ощутит никакого ожога (рис. 4).

Изготовить порох на основе этого горючего материала удалось в 1884 г. французскому инженеру П.Вьелю. Необходимо было создать композицию, легко перерабатываемую, кроме того, требовалось, чтобы она была устойчива при хранении и безопасна в обращении. Растворив нитроцеллюлозу в смеси спирта и эфира, Вьель получил вязкую массу, которая после измельчения и последующего высушивания дала прекрасный порох. По мощности он намного превосходил черный порох, а при горении не давал дыма, поэтому его назвали бездымным. Последнее свойство оказалось очень важным для ведения боевых действий. При использовании бездымного пороха поля сражений не окутывались клубами дыма, что позволяло артиллерии вести прицельный огонь. Отсутствовало также предательское облачко дыма после выстрела, которое прежде выдавало противнику местоположение стрелка. В конце XIX в. все развитые страны начали производить бездымный порох.

Легенды и реальность

Каждый химический продукт проходит сложный путь от лабораторных опытов до промышленного производства. Требовалось создавать различные сорта пороха, одни – пригодные для артиллерии, другие – для винтовочной стрельбы, порох должен быть стабильным по качеству, устойчивым при хранении, а его производство безопасным. Поэтому появилось сразу несколько способов производства пороха.

В организации порохового производства в России заметную роль сыграл Д.И.Менделеев. В 1890 г. он совершил поездку по Германии и Англии, где знакомился с производством пороха. Существует даже легенда, что до этой поездки Менделеев определил состав бездымного пороха, воспользовавшись сведениями о количестве того сырья, которое еженедельно завозили на завод по производству пороха. Можно полагать, что для химика столь высокого класса не составляло никакого труда на основе полученных сведений понять общую схему процесса.

Вернувшись из поездки в Петербург, он начал детально изучать нитрование целлюлозы. До Менделеева многие полагали, что чем сильнее нитрована целлюлоза, тем выше ее взрывчатая сила. Менделеев доказал, что это не так. Оказалось, существует оптимальная степень нитрования, при которой часть углерода, содержащегося в порохе, окисляется не в углекислый СО 2 , а в угарный газ СО. В результате на единицу массы пороха образуется наибольший объем газа, т.е. порох обладает максимальным газообразованием.

В процессе производства нитроцеллюлозы ее тщательно отмывают водой от следов серной и азотной кислот, после чего высушивают от следов влаги. Ранее это делали с помощью потока теплого воздуха. Такой процесс высушивания был малоэффективен и к тому же взрывоопасен. Менделеев предложил высушивать влажную массу, промывая ее спиртом, в котором нитроцеллюлоза нерастворима. Вода при этом надежно удалялась. Этот метод впоследствии был принят во всем мире и стал классическим технологическим приемом при изготовлении бездымного пороха.

В итоге Менделееву удалось создать химически однородный и совершенно безопасный в обращении бездымный порох. Свой порох он назвал пироколлодием – огненным клеем. В 1893 г. были проведены испытания нового пороха при стрельбе из дальнобойных морских орудий, и Менделеев получил поздравительную телеграмму от известного океанографа и замечательного флотоводца вице-адмирала С.О.Макарова.

К сожалению, производство пироколлодийного пороха, несмотря на его явные преимущества, не наладилось в России. Причиной этого было преклонение руководящих чиновников Артиллерийского управления перед всем иностранным и соответственно недоверие к российским разработкам. В результате на Охтинском заводе все производство пороха шло под контролем приглашенного французского специалиста Мессена. Он не считался даже с мнением Менделеева, заметившего недостатки производства, и вел дело строго по своим инструкциям. Зато пироколлодийный порох Менделеева был принят на вооружение в американской армии и производился в огромных количествах на заводах США в период первой мировой войны. Причем американцы умудрились даже взять патент на производство пироколлодийного пороха спустя пять лет после того, как он был создан Менделеевым, но этот факт никак не взволновал российское военное ведомство, свято верившее в преимущества французского пороха.

К началу ХХ в. во всем мире было налажено производство нескольких видов бездымного пороха. Самыми распространенными среди них были пироколлодийный порох Менделеева, кроме того, близкий к нему по составу, но имеющий иную технологию и более короткие сроки хранения пироксилиновый порох Вьеля (о нем было рассказано ранее), а также пороховая смесь, названная кордитом .С производством кордита связана одна необычная история, о которой речь пойдет далее.

Химик-президент

Х.Вейцман
(1874–1952)

С начала ХХ в. военная отрасль промышленности Англии была ориентирована на кордитный порох. В его состав входили нитроцеллюлоза и нитроглицерин. На стадии формования использовался ацетон, который придавал повышенную пластичность смеси. После формования ацетон испарялся. Сложность состояла в том, что к началу первой мировой войны основную массу ацетона Англия импортировала из США морским путем, но в это время на море уже полностью «хозяйничали» немецкие подводные лодки. В Англии возникла острая необходимость производить ацетон самостоятельно. На помощь пришел мало кому известный химик Хаим Вейцман, который незадолго до этого эмигрировал в Англию из села Мотол (под г. Пинском в Белоруссии).

Работая на химическом факультете Манчестерского университета, он опубликовал статью, где описал ферментативное расщепление углеводов. При этом получалась смесь ацетона, этанола и бутанола. Британское военное ведомство пригласило к себе Вейцмана, чтобы выяснить, можно ли с помощью открытого им процесса организовать производство ацетона в количестве, необходимом для военной отрасли промышленности. По мнению Вейцмана, такое производство можно было создать, если решить небольшие технические проблемы. Для отделения ацетона вполне применима простая перегонка благодаря заметной разнице в температурах кипения присутствующих соединений. Однако при организации производства возникла совсем иная сложность. Источником углеводов в процессе Вейцмана было зерно, но собственное производство зерна в Англии полностью потреблялось пищевой отраслью промышленности. Дополнительное зерно приходилось ввозить из США морским путем, в итоге немецкие подводные лодки, угрожавшие импорту ацетона, точно так же угрожали импорту зерна. Казалось, что круг замкнулся, но все же выход из этой ситуации был найден. Хорошим источником углеводов оказались конские каштаны, не имевшие, кстати, никакой пищевой ценности. В результате в Англии была организована массовая кампания по сбору конских каштанов, в ней участвовали все школьники страны.

Ллойд Джордж, бывший премьер-министром Великобритании во времена первой мировой войны, выражая свою признательность Вейцману за его усилия по укреплению военной мощи страны, представил его министру иностранных дел Дэвиду Балфору. Балфор спросил Вейцмана, какую награду он хотел бы получить. Желание Вейцмана оказалось совершенно неожиданным, он предложил создать еврейское государство на территории Палестины – исторической родине евреев, находившейся к тому моменту в течение уже многих лет под контролем Англии. В результате в 1917 г. появилась вошедшая в историю декларация Балфора, в которой Англия выступила с предложением выделить территорию для будущего еврейского государства.

Эта декларация сыграла свою роль, но не сразу, а лишь спустя 31 год. Когда весь мир узнал о зверствах фашистов во время второй мировой войны, необходимость создания такого государства стала очевидной. В итоге в 1948 г. было создано государство Израиль. Хаим Вейцман стал его первым президентом, как человек, впервые предложивший мировому сообществу эту идею. Научно-исследовательский институт в израильском г. Реховоте носит теперь его имя. А начиналось все с производства бездымного пороха.

Возвращение старинной «профессии»

Долгое время использование пороха в военном деле ограничивалось двумя задачами: первая – привести в движение пулю или снаряд, находящийся в стволе орудия, вторая – боевой заряд, расположенный в головке снаряда, должен был взрываться при попадании в цель и производить разрушительное действие. Бездымный порох позволил возродить на новом уровне еще одну, забытую возможность пороха, для которой, собственно говоря, он и был создан в Древнем Китае – запуск фейерверков. Постепенно военная промышленность пришла к мысли использовать бездымный порох как топливо, позволяющее двигать ракету за счет реактивной тяги, образующейся при выбросе газов из сопла ракеты. Первые такие опыты проводились еще в первой половине XIX в., а появление бездымного пороха вывело эти работы на новый уровень – возникла ракетная техника. Вначале создавали твердотопливные ракеты на основе пороховых зарядов, вскоре появились ракеты на жидком топливе – смеси углеводородов с окислителями.

Состав пороха к этому моменту был несколько изменен: в России взамен легколетучих растворителей стали использовать добавку тротила. Новый пироксилино-тротиловый порох (ПТП) горел абсолютно без дыма, с огромным газообразованием и вполне стабильно. Его стали применять в виде прессованных шашек, несколько напоминающих хоккейную шайбу. Интересно, что первые такие шашки были изготовлены на тех самых прессах, которыми пользовался Менделеев во времена своего увлечения пороховым делом.

Одно из первых необычных применений твердотопливных ракет на основе ПТП было предложено в 1930-е гг. – использовать их в качестве ускорителей самолетов. На земле это позволяло резко сократить длину стартового пробега самолетов, а в воздухе обеспечивало кратковременное резкое приращение скорости полета, когда было необходимо догнать противника или уклониться от встречи с ним. Можно себе представить ощущения первых испытателей, когда сбоку от кабины пилота извергался факел бешеного огня.

Отечественное ракетостроение в 1930-е гг. возглавили выдающиеся деятели в области ракетной техники – И.Т.Клейменов, В.П.Глушко, Г.Э.Лангемак и С.П.Королев (будущий создатель космических ракет), работавшие в специально созданном Реактивном научно-исследовательском институте (РНИИ).

Именно в этом институте по идеям Глушко и Лангемака впервые был создан проект многозарядной установки для залповой стрельбы реактивными снарядами, позже эта установка стала известна под легендарным именем «Катюша».

В эти годы уже набирал обороты маховик сталинских репрессий. В 1937 г. по ложному доносу были арестованы и вскоре расстреляны начальник института Клейменов и его заместитель Лангемак, а в 1938 г. арестованы и осуждены Глушко (на 8 лет) и Королев (на 10 лет). Все они позже были реабилитированы, Клейменов и Лангемак посмертно.

В этих драматических событиях неприглядную роль сыграл А.Г.Костиков, работавший в институте рядовым инженером. Он возглавлял экспертную комиссию, которая вынесла решение о вредительской деятельности основного руководящего состава института. Выдающиеся специалисты были арестованы и осуждены как враги народа. В итоге Костиков занял должность главного инженера, затем стал руководителем института и заодно «автором» нового типа вооружения. За это он был щедро награжден в начале войны, несмотря на то, что к созданию «Катюши» не имел никакого отношения.

Признание властью заслуг Костикова в создании нового оружия, а также его старания по выявлению в институте «врагов народа» не спасли его самого от репрессий. В июле 1942 г. руководимый им институт получает от Комитета обороны задание: разработать в течение восьми месяцев истребитель-перехватчик с реактивным двигателем. Задание было исключительно сложным, выполнить его вовремя не удалось (самолет был создан лишь через полгода после истечения указанного срока). В феврале 1943 г. Костиков был арестован, обвинен в шпионаже и вредительстве. Впрочем, дальнейшая его судьба была не столь трагична, как у тех, кого он сам обвинил во вредительстве, спустя год он был освобожден.

Возвращаясь к рассказу о «Катюшах» (рис. 5), напомним, что эффективность нового ракетного оружия удалось показать в самом начале войны. 14 июля 1941 г. первый залп пяти «Катюш» накрыл скопление немецких войск в районе железнодорожной станции Орша. Затем «Катюши» появились на Ленинградском фронте. К концу Великой Отечественной войны на ее фронтах действовало более десяти тысяч «Катюш», выпустивших около 12 миллионов ракетных снарядов разных калибров.

Мирные профессии пороха

Интересно, что порох может спасти жизнь не только в результате использования в огнестрельном оружии для защиты от агрессивного нападения, но и при вполне мирном его применении.

Интенсивное развитие автомобилестроения поставило ряд проблем, в первую очередь безопасность водителя и пассажиров. Наибольшее распространение получили ремни безопасности, которые предохраняют от травм при резких торможениях автомобиля. Однако такие ремни не могут предотвратить удар головой о руль, приборную доску или ветровое стекло и затылком при резком движении тела назад. Наиболее современный способ защиты – надувная подушка безопасности, она представляет собой нейлоновый мешок определенной формы, который в нужный момент заполняется сжатым воздухом из специального баллончика (рис. 6).

Рис. 6.
Испытание подушек безопасности
на манекенах

Подушка имеет небольшие вентиляционные отверстия, через которые газ медленно стравливается после того, как она «сожмет» пассажира. Заполнение подушки газом происходит за 0,05 с, однако этого времени все же недостаточно в тех случаях, когда автомобиль движется со скоростью свыше
120 км/ч. На помощь пришел бездымный порох. Мгновенно сгорающий небольшой пороховой заряд позволяет надуть подушку продуктами сгорания в десять раз быстрее, чем сжатый воздух. Поскольку после надувания подушки происходит медленное стравливание газов, был разработан специальный состав пороха, который при горении не образует таких вредных продуктов, как оксид азота и угарный газ.

Другое мирное применение бездымный порох нашел там, где этого можно было менее всего ожидать, – для борьбы с огнем. Небольшой пороховой заряд, помещенный в огнетушитель, позволяет почти мгновенно «выстрелить» огнегасительной смесью в направлении распространяющегося пламени.

Не забудем также и о том, что до сих пор старинная «профессия» пороха – запуск фейерверков (рис. 7) – создает нам радостное настроение в праздничные дни.


5. Бездымные взрывчатые компоненты

Пироксилин

Со времен Наполеона командующие войсками жаловались на неспособность отдавать приказы в бою из-за сильного задымления, вызванного порохом, использовавшемся в ружьях.

Большой прорыв вперёд был сделан с изобретением пироксилина — материала, основанного на нитроцеллюлозе. Он нашел широкое применение в артиллерии.

Однако пироксилин имел ряд существенных недостатков. Пироксилин был более мощным, чем дымный порох, но в то же время менее стабильным, что делало его неподходящим для использования с огнестрельным оружием малых размеров — не только из-за большей опасности в полевых условиях, но и из-за повышенного износа оружия. Оружие, которое могло выстрелить тысячи раз обычным порохом, приходило в негодность после нескольких сотен выстрелов с более мощным пироксилином. Также происходило множество взрывов на фабриках по производству пироксилина из-за небрежного отношения к его нестабильности и средствам стабилизации.

По этим причинам применение пироксилина было приостановлено на двадцать с лишним лет, до тех пор пока люди не научились его «приручать». Лишь в 1880 году пироксилин стал жизнеспособным взрывчатым веществом.

Белый порох

В 1884 году Поль Вьель изобрел бездымный порох, названный Poudre B, который был основан на желатинизированном пироксилине, смешанном с эфиром и спиртом, с дальнейшим формированием пороховых элементов и последующей сушкой зерен пороха.

Конечное взрывчатое вещество, которое в наши дни называют нитроцеллюлозой, содержит несколько меньшее количество азота, чем пироксилин, поэтому оно легче желатинизируется спирто-эфирной смесью. Большим достоинством данного пороха было то, что она,в отличие от пироксилина, горит послойно, что делало её баллистические свойства предсказуемыми.

Порох Вьеля произвел революцию в мире стрелкового огнестрельного оружия по нескольким причинам:

  • Больше практически не было дыма, тогда как ранее после нескольких выстрелов с использованием чёрного пороха поле зрения солдата сильно сужалось из-за клубов дыма, что мог исправить только сильный ветер. Кроме того, позиция стрелка не выдавалась клубом дыма из винтовки.
  • Poudre B давал большую скорость вылета пули, что означало более прямую траекторию, что повышало точность и дальность стрельбы; дальность стрельбы достигла 1000 метров.
  • Так как Poudre B был в три раза мощнее чёрного пороха, то его требовалось намного меньше. Боеприпасы облегчались, что позволяло войскам носить с собой большее количество боеприпасов при том же их весе.
  • Патроны срабатывали даже будучи мокрыми. Основанные же на черном порохе боеприпасы должны были храниться в сухом месте, поэтому их всегда переносили в закрытых упаковках, препятствовавших попаданию влаги.

Порох Vieille был использован в винтовке Лебеля, которую сразу же приняла на вооружение Французская армия, чтобы использовать все преимущества нового пороха над чёрным. Другие европейские страны поспешили последовать примеру французов и тоже перешли на свои производные от Poudre B. Первыми были Германия и последовавшая за ней Австрия, которые ввели новое вооружение в 1888 году.

Баллистит

В это время в 1887 году в Великобритании, Альфред Нобель разработал бездымный порох названный баллиститом.

Кордит

Баллистит был модифицирован Фредериком Абелем и Джеймсом Дьюаром в новый состав, названный кордитом. После этого началась «патентная война» между Нобелем и изобретателями кордита по поводу получения британских патентов.

В 1890-м году в США патент на бездымный порох был получен Максимом Хадсоном.

Эти новые взрывчатые вещества были более стабильными и, значит, более безопасными в обращении, чем Poudre B и, что немаловажно — более мощными.

Желатиновый порох

Источник

Иван Платонович Граве — профессор Михайловской артиллерийской академии, полковник, — в 1916 г. усовершенствовал французское изобретение: получил бездымный порох на другой основе — на нелетучем растворителе, — коллоидный, или желатиновый, порох. Он легко поддавался формовке и даже обработке на токарном станке. Применялся желатиновый порох в шашках.

Граве получил патент на это изобретение в 1926 году уже в другой стране — Советской России. Он получил 9 патентов, но как дворянину ему запретили заниматься разработкой реактивных снарядов и он занялся наукой. Главное артиллерийское управление подтверждает его авторство в разработке пороха и снарядов для «Катюши».

Первым взрывчатым веществом , применявшимся в военной технике и в различных отраслях хозяйства, был дымный или черный порох — смесь калиевой селитры, серы и угля в различных соотношениях. Появление дымного пороха относится к глубокой древности. Полагают, что взрывчатые смеси , подобные дымному пороху , были известны за много лет до нашей эры народам Китая и Индии, где селитра самопроизвольно выделяется из почвы. Вполне естественно, что население этих стран случайно могло обнаружить взрывчатые свойства селитры в смеси ее с углем, а затем воспроизвести и применить эту смесь для различных целей.

Наиболее вероятно, что из Китая и Индии сведения о дымном порохе распространились сначала к арабам и грекам, а затем и к народам Европы.

Фридрих Энгельс в статье «Артиллерия», опубликованной в американской энциклопедии в 1858 г. (Ф. Энгельс. Избранные военные произведения, т. 1. Воениздат. 1040, стр. 206-207.), писал: «В настоящее время почти общепризнано, что изобретение пороха и применение его для бросания тяжелых тел в определенном направлении — восточного происхождения».

Первый достоверный случай широкого применения пушек относится лишь к 1232 году нашей эры, когда китайцы, осажденные монголами в Кайфыне, защищались посредством пушек, стрелявших каменными ядрами, и употребляли разрывные бомбы, петарды и другие огнестрельные припасы, имевшие в своем составе порох…

Около 1258 г. в древних индусских сочинениях мы читаем об огневых приборах на повозках, принадлежащих властителю Дели. Спустя сто лет артиллерия вошла в Индии во всеобщее употребление…

Арабы получили селитру и огнестрельные припасы от китайцев и индусов, …византийские греки впервые познакомились с огнестрельными припасами у своих врагов, арабов… От арабов, живших в Испании, знакомство с выработкой и употреблением пороха распространилось на Францию и на Восточную Европу.

Документами, показывающими, что Китай является первой страной, где изобретен дымный порох, свидетельствуют исследования ученых Китайской Народной Республики. Профессор Центрального института национальных меньшинств КНР Фэн Цзя-шен указывает (Журнал «Народный Китай», № 14, июль 1956 г, стр. 37-40.), что на рубеже V и VI столетий китайский медик Тао Хун-цзин изучал горение селитры. Однако изготовлять порох из смеси серы, селитры и древесного угля научились в Китае лишь через три — четыре столетия после Тао Хун-цзина.

В начале IX века алхимик Нин Сюй-цзы занимался накаливанием смеси из серы, селитры и растения — кокорника. Эта смесь по своим свойствам была похожа на порох и в дальнейшем развивалась специалистами военного дела. В 970 г. во время Сунской династии Фэн И-шэн и Юэ И-фон стали применять зажигательные стрелы, в наконечниках которых закладывался медленно горящий порох. В китайском трактате «Основы военного дела», написанном в 1040 г, содержалось три рецепта изготовления дымного пороха, причем скорость горения его регулировалась добавкой различных веществ (например, смолы), и он применялся как воспламенительное и взрывчатое вещество.

В 1132 г. Чень Гуй изобрел огнестрельное оружие — пищаль, бамбуковый ствол которого набивался дымным порохом. При зажжении пороха фитилем из ствола вылетало пламя, поражавшее противника.

В XIII — XIV в стволы огнестрельного оружия изготовлялись из меди и железа, а поражающими элементами являлись камни, железные ядра, галька и обрезки железа. В начале XIII века рецепты пороха, способ его изготовления и огнестрельное оружие в результате развития торговых отношений и культурного обмена проникли из Китая в Аравию.

Мнения многих историков сходятся на том, что изобретение дымного пороха нельзя приписать одному лицу, а что в этом принимали участие, независимо один от другого, много лиц, постепенно совершенствовавших взрывчатую смесь, впервые открытую в Китае.

В этом направлении работали известные алхимики-монахи Марк Грек, Альберт Магнус, Роджер Бекон, Бертольд Шварц и др. В рукописи греческого монаха Марка Грека «Книга огней», написанной в конце IX века, мы уже находим описание рецепта дымного пороха, состоящего из 60% селитры, 20% серы и 20% угля.

Английский монах Роджер Бекон в 1242 г. в книге «Liber de Nullitate Magiae» приводит рецепт дымного пороха для ракет и фейерверков. В нем даются следующие соотношения между компонентами: 40% селитры, 30% угля и 30% серы.

Сначала дымный порох применялся как взрывчатая смесь для приготовления фейерверков, создававших дымовые и огненные эффекты. Затем его стали применять в военном деле для снаряжения различных снарядов и позднее в качестве метательного вещества. Начало применения дымного пороха для стрельбы из орудий точно не установлено. Более или менее достоверными сведениями по этому вопросу являются следующие.

В 1132 г. в Китае изобретена пищаль с бамбуковым стволом для стрельбы дымным порохом.

В 1232 г. китайцы, осажденные монголами в Кайфыне, защищались посредством пушек, стрелявших каменными ядрами, и употребляли разрывные бомбы, снаряженные дымным порохом.

В 1331 г. немцы при защите города Чевидале против итальянцев применяли огнестрельное оружие, действующее от заряда дымного пороха.

В 1346 г. англичане в битве при Кресси против французов применяли пушки, стрелявшие дымным порохом. Руководил этой стрельбой монах Бертольд Шварц, которому неправильно приписывается изобретение дымного пороха.

В 1382 г. русские при обороне Москвы от нашествия татарских орд применяли пушки, стрелявшие дымным порохом, и сосуды, снаряженные дымным порохом.

Указание историка Карамзина о том, что на Русь пушки и порох ввезены из Европы в 1389 г, является неправильным и противоречит фактам, описанным в русских летописях 1382 г.

Открытие метательной силы дымного пороха и использование его для стрельбы из орудий послужило могучим толчком к развитию военного дела. Оно вызвало необходимость разработки технологии изготовления порохов, строительства пороховых заводов и изыскания сырьевых источников для получения селитры, серы и угля.

Небольшие пороховые заводы существовали в ряде европейских стран, в том числе и в России в XIV веке.

Сначала дымный порох применялся для стрельбы в виде порошка — пороховой мякоти (прах, пыль) и в России назывался зельем (Название «зелье» происходит от медицинского термина «лекарство», что указывает на применение подобных смесей в качестве лечебных средств). Он имел разнообразный состав и низкую плотность. Заряжание орудий и особенно ружей пороховой мякотью было крайне неудобным и затруднительным. Необходимость увеличения скорострельности оружия привела к замене пороховой мякоти пороховыми зернами. Введение на пороховых заводах операции зернения относится к концу XV века. По литературным данным, в России зерненый порох применялся для стрельбы из орудий в 1482 г.

В некоторых странах, например, в Италии и Турции, зернение стало производиться значительно позже, и пороховая мякоть применялась для стрельбы до конца XVI века и начала XVII века. Составы дымного пороха этого времени, применявшихся в России, были: для ручного оружия — 60% селитры, 20% серы и 20% угля, для малокалиберных орудий — 56% селитры, 22% серы и 22% угля; для крупнокалиберных орудий — 57% селитры, 14% серы и 29% угля.

Пороховое дело в России получило заметное развитие уже в XVI веке, когда были построены новые пороховые заводы, улучшен состав пороха и технология его получения. Порох в этот период широко используется для подрывных целей, особенно при осаде крепостей. Количество произведенного пороха при Иване Грозном только для потребностей армии составляло около 300 т в год. Дальнейший и наиболее существенный шаг в развитии порохового производства в России сделан в начале XVIII века при Петре 1.

В 1710…1723 г.г. были построены крупные государственные пороховые заводы — Петербургский, Сестрорецкий и Охтинский. Последний просуществовал свыше двухсот лет и сыграл в истории отечественного пороходелия исключительную роль как центр научно-технических исследований в области взрывчатых веществ и порохов.

Под руководством выдающихся мастеров порохового дела Егора Маркова и Ивана Леонтьева была усовершенствована технология дымного пороха — введена обработка тройной смеси под бегунами, что повысило плотность порохов и их стабильность при горении.

В этот период дымный порох имел различия по составу и размерам зерен в зависимости от его назначения. Для ручного оружия применялся порох — 74% селитры, 11% серы и 15% угля; для малокалиберных орудий порох — 67% селитры, 20% серы и 13% угля; для крупнокалиберных орудий дымный порох — 70% селитры, 17% серы и 13%. угля. Годовое производство порохов при Петре I всеми заводами России составляло в среднем около 1000 т.

Качество русских порохов было высокое, и они не уступали лучшим сортам порохов иностранных государств. Неслучайно поэтому датский посланник в Петербурге писал о русском пороходелии того времени: «вряд ли найдешь государство, где его (порох) изготовляли бы в таком количестве и где бы он по качеству и силе мог сравниться со здешним».

Сила пороха определялась стрельбой из вертикальной мортирки. На дно мортирки насыпался заряд пороха весом 12 г, а на него клали конус твердого дерева со свинцовым сердечником. При сгорании пороха образующиеся газы подбрасывали конус на определенную высоту, которая и являлась характеристикой силы пороха. Требовалось, например, чтобы для пороха к ручному оружию высота подъема конуса была не менее 30 м.

Вместе с тем следует отметить, что требования к порохам при Петре I были примитивными. Например, в них указывалось: «порох должен быть добрым, сухим, чистым и сильным». Если порох не удовлетворял этим требованиям, то его считали «к стрельбе непоносистым и к лежанию непрочным».

В конце XVIII века в результате теоретических и экспериментальных исследований дымного пороха и его составных компонентов, проведенных в 1748 г. М. В. Ломоносовым в России, а позднее Лавуазье и Бертло во Франции, был найден наиболее оптимальный его состав: 75% калиевой селитры, 10% серы и 15% угля. Этот состав стал применяться в России с 1772 г. и практически не претерпел никаких изменений до настоящего времени.

В 1771 г. после реконструкции вступил в строй Шостенский пороховой завод, а в 1788 г. построен крупнейший в мире Казанский пороховой завод. В это же время совершенствуется технология дымного пороха — вводятся операции измельчения компонентов под бегунами, смешение тройного состава в деревянных бочках, полировка пороха, что повысило плотность пороха и уменьшило его гигроскопичность. Преподаватель Артиллерийской академии Кульвец в своих лекциях отмечал, что «бегунный способ обработки смеси с присоединением к нему бочек и прессов, как это принято в России для приготовления военного пороха, по моему личному убеждению и по мнению всех пороховиков, является лучшим из всех известных до настоящего времени способов выделки пороха».

В 1808…1809 г.г. были проведены широкие испытания русских порохов сравнительных с английскими, австрийскими, французскими и швейцарскими. Результаты испытаний показали, что по пробе в вертикальной мортирке и по гидростатической пробе русские пороха оказались в баллистическом отношении более сильными по сравнению с иностранными, что указывало на хорошо подобранный их состав и совершенную технологию.

О качестве русского пороха капитан одного военного французского корабля в 1810 г. писал: «Лучший порох на свете — это русский … мы имели случай убедиться в превосходстве этого пороха над всеми известными сортами во время осады Корфу, когда русские бросали на значительное расстояние бомбы весом в 25 кг».

В первой половине XIX века наблюдается значительный рост мощностей пороховых заводов. В 1806 г. только на Охтинском пороховом заводе работало около 1000 человек, а производительность его составляла свыше 600 т в год. В 1827 г. были введены: медные бегуны новой конструкции, разымка пороха, гидравлические пресса для уплотнения состава, станки для зернения, приборы для очистки и мешки пороха и др. В 1828 г. учреждена должность инспектора пороховых заводов, в обязанность которого входило наблюдение за производством и приемка пороха.

В 1830 г. при Охтинском пороховом заводе создается школа для подготовки мастеров и подмастерьев порохового, селитренного и серного дела.

В 1844 г. А. А. Фадеевым был предложен способ безопасного хранения дымного пороха путем смешения его с графитом.

В 1845 г. К. И. Константинов предложил электробаллистический прибор, который нашел применение для определения скорости полета снарядов. В этот период дымный порох стал широко применяться как бризантное взрывчатое вещество в подводных минах В. С. Якоби и как метательное взрывчатое вещество в боевых ракетах К. И. Константинова.

Большое научное и техническое значение имели экспериментальные исследования состава продуктов горения дымного пороха, проведенные профессором Артиллерийской академии Л. Н. Шишковым в 1857 г. Им было установлено, что при горении 1 г дымного пороха образуется 0,68 г твердых веществ (K2SO4, K2CO3, K2S и ряд других) и 0,32 г газообразных продуктов (N2, CO2, CO и др.). Эти данные разъяснили причину образования дыма при выстреле и загрязнения канала ствола.
После изобретения в 1831 г. Бикфордом в Англии огнепроводного шнура дымный порох стал применяться для его изготовления.

Наиболее интенсивные работы по изменению состава, разработке новых форм пороховых элементов, усовершенствованию методов производства и испытаний дымных порохов были проведены в период принятия на вооружение армий нарезного оружия. К порохам стали предъявляться более высокие требования в отношении их плотности и прогрессивности горения в связи с повышением мощности пушек.

В пятидесятых годах XIX столетия состав военных дымных порохов в различных государствах Европы (России, Германии, Австрии, Франции, Англии, Италии и др.) был почти одинаков. Соотношения между компонентами колебались в следующих пределах: селитра 77,5…74,0%, сера 12,5…8.0%, уголь 16,0…12,5%. Для ручного оружия готовился ружейный порох с размерами зерен от 0,55 до 1,00 мм, а для орудий — артиллерийский порох с размерами зерен от 1,25 до 2,0 мм. Для дальнобойных орудий большого калибра был разработан крупнозернистый порох с размером зерен от 6 до 10 мм. Применение крупнозернистых порохов увеличило время горения порохов, но не решило проблемы прогрессивности(tm) их горения. Этот вопрос был положительно решен лишь после изобретения А. В. Гадолиным и Н. В. Маиевским в 1868 г. прогрессивно-горящего пороха в виде шестигранных призм с семью каналами. Призмы с плотностью 1,68-1,78 г/см3 получались путем прессования ружейного пороха в матрицах на механическом прессе проф. А. Н. Вышнеградского.

В США Родман предложил в 1870 г. прогрессивный порох в виде дисков с отверстиями. Во Франции по предложению Кастана производили пороха параллелепипедной формы. В дальнейшем для снижения скорости горения стали применять бурый призматический порох, при производстве которого использовался слабо обожженный древесный уголь с содержанием углерода 52-55%.

Бурый порох имел следующее соотношение между компонентами: 76…80% калиевой селитры, 2…4% серы и 18…22% шоколадного угля. В некоторых образцах бурого пороха сера совершенно отсутствовала.

В конце XIX века техника производства дымного пороха достигла такого уровня, на котором за некоторым исключением она находится и в настоящее время. Технологический процесс производства его состоял тогда из следующих операций:
1) измельчения селитры, серы и угля в виде двойных смесей в железных бочках с бронзовыми шарами;
2) приготовления тройной смеси путем смешения компонентов в деревянных, обшитых кожей, бочках с бокаутовыми шарами;
3) уплотнения тройной смеси под бегунами и прессованием в гидравлических прессах;
4) зернения пороховой лепешки на бронзовых вальцах с зубьями;
5) отпыловки, полировки и сортировки пороха;
6) мешки и укупорки пороха.

В 1874 г. Л. X. Виннер в России предложил уплотнение тройной смеси производить на обогреваемых прессах при 100…105°С. Этот метод получил название горячего метода прессования и сейчас почти вытеснил более опасный и энергоемкий метод уплотнения пороховой смеси под бегунами.

Методы испытания дымного пороха к этому времени также получили значительное развитие и состояли в следующем.

1. Физико-химические испытания:
1) определение размеров зерен, действительной и гравиметрической плотности;
2) определение качества исходных материалов (селитры, серы, угля) и состава пороха.

2. Баллистические испытания:
1) определение скорости снаряда при помощи хронографа Буланже;
2) определение давления пороховых газов при помощи крешерного прибора.

До конца XIX века на протяжении более пяти столетий дымный порох был по существу единственным взрывчатым веществом, которое применялось для метательных целей, для снаряжения снарядов и для проведения всевозможных подрывных работ в военном деле и в различных отраслях хозяйства.

Появление и развитие бездымных порохов

Длительный застой в развитии взрывчатых веществ и порохов в течение многих столетий объяснялся низким уровнем естественных наук того времени и, в частности, химии. Экономические и политические условия средневековья не способствовали развитию науки и техники. Химическая промышленность периода феодализма имела замкнутый, узко цеховой характер. В производстве существовали методы и рецептуры, тайно или явно передававшиеся от поколения к поколению. Подневольный рабский и крепостной труд не способствовал усовершенствованию производства, развитию науки и техники.
В конце XVIII и в начале XIX века в ряде стран Европы зарождается капитализм. В этот период отмечается гигантский скачок в развитии естествознания. Химия вышла из рамок схоластики и стала развиваться на научной основе. Особенно важное значение имело возникновение новой отрасли химии — органической химии, в результате развития которой появилось новое сырье и различные методы использования природных материалов.

Общий прогресс науки и промышленности вызвал небывалые до этого времени открытия в области физики, химии и, в частности, в области взрывчатых веществ и порохов.

Одно за другим синтезировались взрывчатые вещества, превосходящие по силе дымный порох. В 1832…1838 г.г. открыта нитроцеллюлоза, а в 1845 г. в России и Германии был получен и исследован пироксилин. В 1847 г. в Италии был получен, а в России в 1853 г. исследован нитроглицерин. Оба эти вещества были впоследствии применены для изготовления бездымного пороха. Большое влияние на усовершенствование дымных и появление новых бездымных порохов оказала внутренняя баллистика, развитие которой относится к этому же периоду.

К началу 1890 г. были созданы предпосылки для получения нитроцеллюлозных порохов на спирто-эфирном растворителе и на нитроглицерине. Следовательно, переворот в военном пороходелии в конце прошлого столетия не являлся случайным. Это не результат гениальности одного лица или счастливого открытия исследователя. Он был подготовлен всем развитием науки и промышленности XIX века.

Над разрешением проблемы получения более мощных и бездымных порохов, вызванной необходимостью повышения начальных скоростей снарядов и скорострельности орудий, работали сотни ученых и специалистов во многих странах мира.

Первенство в изобретении бездымного пироксилинового пороха принадлежит французскому инженеру Вьелю. В 1885 г. после многочисленных экспериментальных исследований он получил и испытал пироксилиновый пластинчатый порох, получивший название пороха «B». Приготовление пороха «В» состояло из операций: смешения сухого пироксилина (смеси растворимого и нерастворимого) со спирто-эфирным растворителем, уплотнения пластичной массы на вальцах и получения роговидного полотна, резки полотна на пластинки и удаления из пластинок спирто-эфирного растворителя сушкой.

Первые испытания пороха стрельбой из ружья Лебеля и 65 мм пушки показали полное согласие теории с опытом и выявили исключительные преимущества нового пороха по сравнению с дымным. Было установлено, что изготовленный Вьелем пироксилиновый порох не дает при стрельбе дыма, не оставляет нагара в канале ствола, горит параллельными слоями, имеет силу, в три раза превышающую дымный порох, и позволяет значительно увеличить начальные скорости снарядов при меньшем по сравнению с дымным порохом весе заряда. В России пироксилиновый порох был получен самостоятельно Г. Г. Сухачевым в 1887 г.

Широкие опыты по разработке метода производства пироксилиновых порохов и создание промышленности бездымных порохов были начаты в конце 1888 г. под непосредственным руководством начальника мастерской Охтинского завода 3. В. Калачева и при участии С. В. Панпушко, А. В. Сухинского и Н. П. Федорова.

К концу 1889 г. Охтинский завод разработал образец винтовочного пироксилинового пороха в виде пластинок, который при стрельбе из ружья Лебеля дал требуемую начальную скорость при допустимом давлении и значительно меньшем по сравнению с дымным порохом весе заряда.

Данный образец пороха готовился из нерастворимого пироксилина (с содержанием азота около 13,2%), доставленного с завода морского ведомства. Растворителем служил ацетон. При дальнейшем испытании из отечественного оружия этот порох оказался неудовлетворительным.

При стрельбе из винтовки Мосина образчик пороха, изготовленный из нерастворимого пироксилина с применением в качестве растворителя ацетона, дал недопустимо высокие давления, достигающие 4000 кг/см2, в то же время при стрельбе из французского ружья Лебеля этот порох давал вполне удовлетворительные результаты, давление пороховых газов не превышало 2500 кг/см2.

Вследствие того, что этот образец пороха не подошел к новой русской 7,62 мм винтовке системы Мосина, были предприняты изыскания другого образца пороха, который давал бы в этой винтовке начальную скорость 615 м/с при допустимом давлении не выше 2500 кг/см2.

Опыты по приготовлению пороха были поручены С. А. Броунсу, который 9 середине 1890 г. предложил образчик пороха с применением в качестве растворителя смеси ацетона и эфира. Соотношение между ацетоном и этиловым эфиром было принято 1:3 при общем количестве растворителя 125 частей на 100 частей сухого пироксилина. Для уменьшения скорости горения пороха в состав пороховой массы было введено 2% касторового масла. Порох на ацетоно-эфирном растворителе имел большую механическую прочность вследствие меньшего разрушения волокна при пластификации и при стрельбе из винтовки Мосина давал вполне удовлетворительные баллистические результаты как по величине начальных скоростей и давлений, так и по однообразию действия отдельных зарядов. В том же 1890 г. по инициативе А. В. Сухинского.

3. В. Калачевым на Охтинском заводе были приготовлены образцы пороха из смесевого пироксилина (содержание азота 12,8% и растворимость 40%) на спирто-эфирном растворителе, которые отвечали полностью предъявляемым к нему требованиям. Работы с порохом на ацетоно-эфирном растворителе, как более дорогом и менее доступном для массового применения, были прекращены.

Таким образом, в конце 1890 г. в России был получен пироксилиновый порох на спирто-эфирном растворителе и в 1891 г. была изготовлена опытно-валовая партия пластинчатого пороха (весом в 20 т) для патронов трехлинейной винтовки системы Мосина.

В дальнейшем были разработаны ленточные пироксилиновые пороха для орудий. Одновременно с разработкой пороха в России под общим руководством А. В. Сухинского было начато строительстве пироксилиновых и пороховых заводов.
В июле 1890 г. приступили к постройке пироксилинового и порохового завода на Охте, на котором к концу 1891 г. была налажена валовая фабрикация винтовочного пороха. Решающая заслуга в разработке технологии пироксилинового пороха в России принадлежит 3. В. Калачеву. Он является творцом бездымного пороха в России, без помощи иностранцев установившего производство пороха и впоследствии усовершенствовавшего производство пироксилина.

Большую роль в установлении методов производства, испытании и валовой фабрикации бездымного пироксилинового пороха сыграли полковники Сухинский и Симбирский, капитаны Липницкий, Никольский, Киснемский, Михелев, Жеребятьев и Каменев, штабс-капитаны Броунс и Дымша.

В период 1891-1895 гг. по проектам и под руководством талантливых русских инженеров Лукницкого, Симбирского, Хрущева и Иващенко были построены крупнейшие пороховые заводы для производства пироксилиновых порохов — Казанский и Шостенский, которые по своим размерам и техническим характеристикам превосходили пороховые заводы Западной Европы.
В странах Западной Европы и Америке в девяностых годах XIX столетия были разработаны и частично приняты на вооружение нитроцеллюлозные пороха других составов, отличных от русского и французских порохов.
В 1888 г. шведским инженером Альфредом Нобелем был предложен пироксилино- нитроглицериновый порох — твердый раствор коллодионного хлопка (коллоксилина) в нитроглицерине. Количество нитроглицерина в порохе Нобеля составляло 40-60%; позже в состав этого пороха добавлялись инертные примеси (например, камфара) для снижения скорости горения и дифениламин для повышения химической стойкости пороха.

Приготовление пороха Альфреда Нобеля состояло из операций смешения коллоксилина с нитроглицерином в присутствии горячей воды, удаления воды из массы и пластификация последней на горячих вальцах с целью получения роговидного полотна, резка полотна на пластинки и ленты. Порох Нобеля под названием «баллистит» был принят на вооружение в Германии и Австрии и под названием «филит» — в Италии. Баллистит имел существенные преимущества перед пироксилиновым порохом. Он почти негигроскопичен и не увлажняется при хранении; его изготовление продолжается примерно один день, в то время как пироксилиновый порох должен был сушиться неделями и даже месяцами.

Другой тип нитроглицеринового пороха под названием «кордит» был предложен в 1889 г. Абелем и Дюаром в Англии. (Название кордит происходит от английского слова «cord», что значит шнур или струна). При изготовлении этого пороха применялся нерастворимый пироксилин, пластификация которого осуществлялась нитроглицерином и ацетоном в мешателях при обычной температуре; для повышения химической стойкости и снижения скорости горения добавлялся вазелин. Масса прессовалась через матрицы гидравлического пресса в виде шнуров без канала, которые резались затем на стержни. Ацетон после получения пороха удалялся из него длительной сушкой.

Принципиально способ приготовления кoрдита не отличается от способа приготовления пироксилинового пороха. Первый образец кoрдита в виде струны содержал в своем составе 58% нитроглицерина, 37% нерастворимого пироксилина и 5% вазелина и предназначался для винтовок и малокалиберных орудий. Для снижения степени выгорания каналов крупных орудий несколько позже был принят кордит «MD», в котором содержались 30% нитроглицерина, 65%, пироксилина и 5% вазелина.

В 1893 г. профессор Монро в Америке взял патент на изготовление пороха из нерастворимого пироксилина (40%), пластифицированного нитробензолом (60%). После приготовления пороха нитробензол удалялся из него обработкой в горячей воде, а порох при этом «затвердевал», становился более плотным. Процесс затвердевания по английски называется «induration», отчего и порох был назван индюритом. Индюрит вследствие ряда служебных и технологических недостатков не нашел широкого применения и вскоре был снят с производства.

Яркие страницы в историю пороходелия вписаны Д. И. Менделеевым и его сотрудниками в результате работ по синтезу пироколлодия и разработке на его основе бездымного пороха.

При активном участии И. М. Чельцова, Л. Г. Федотова, С. П. Вуколова и П. П. Рубцова в 1892 г. были получены образцы пироколлодийного пороха и произведена ими стрельба из морских орудий. По заключению специалистов, производивших испытания, пироколлодийный порох оказался первым бездымным порохом из всех ранее испытанных, который не показал каких-либо неожиданностей. Порох Д. И. Менделеева сразу же внушил к себе доверие, так как все теоретические предположения о его свойствах были подтверждены опытными данными, полученными стрельбой из дальнобойных морских орудий.

В июне 1893 г. в России была произведена стрельба пироколлодийным порохом из 12-дюймового орудия, и инспектор морской артиллерии адмирал С. О. Макаров поздравил Д. И. Менделеева с блестящим успехом.

После того, как пироколлодийный порох выдержал испытания при стрельбе из морских орудий всех калибров, Д. И. Менделеев считал задачу по разработке бездымного пороха выполненной и больше не возвращался к исследованиям в области порохов. Однако он любил свою временную работу, свой пироколлодийный порох. В статье «О пироколлодийном порохе» он писал: «Влагая то, что могу в дело изучения бездымного пороха, я уверен, что служу, по мере сил, мирному развитию своей страны и научному познанию вещей, слагающемуся из попыток отдельных лиц осветить узнанное». (Д. И. Менделеев. Том IX, 1949, стр. 253)

Как известно, пироколлодийный порох Д. И. Менделеева, несмотря на некоторые преимущества по сравнению с пироксилиновым порохом французского типа, не был принят в России. Он лишь в небольших количествах производился с 1892 г. на морском пороховом заводе. Частично пироколлодийный порох, близкий по составу к пороху, предложенному Д. И. Менделеевым, готовился на Шлиссельбургском заводе в первые годы применения бездымных порохов. Пироколлодийный порох Д. И. Менделеева был принят на вооружение американского военно-морского флота в 1897 г, а в армии в 1899 г. Он производился в громадных количествах на заводах США в период первой мировой войны и после ее до замены его беспламенными негигроскопическими порохами.

Это обстоятельство не являлось случайным. До 1899 г. для американской армии производился нитроглицериновый порох кордитного типа с 25% нитроглицерина. Однако он оказался механически непрочным, ломался на мелкие части и вызывал повышенные давления при стрельбе. По этой причине в 1899 г. разорвалось десятидюймовое орудие. Это заставило командование американской армии прекратить производство нитроглицериновых порохов и перейти к изготовлению пироколлодийных порохов. Следует отметить, что Россия в период первой мировой войны ввозила из Америки большие количества пироколлодийных порохов как россыпью, так и в виде зарядов 76 мм патронов.

До сих пор причины непринятия на вооружение в России пироколлодийного пороха Д. И. Менделеева остаются не выясненными. На этот, вполне законный и исключительно важный вопрос никто из специалистов по порохам не дал ответа. Попытки некоторых пороховиков объяснить это чисто техническими причинами вроде той, что при получении пироколлодийного пороха необходимо расходовать большое количество спирто-эфирного растворителя, являются для того времени по меньшей мере наивными.

Дело в том, что, когда был разработан пироколлодийный порох, никто еще не интересовался экономикой производства. Главное внимание уделялось качеству пороха, а пироколлодийный порох был наиболее однородным и не давал никаких аномалий при стрельбе из самых мощных орудий.

Высокие физико-химические и баллистические свойства пироколлодийного пороха не могли не привлечь внимания работников артиллерийского ведомства.

Не случайно в России в 1900 г. после принятия в США пороха Д. И. Менделеева была создана комиссия под председательством генерал-майора Потоцкого, которая имела целью выяснить путем стрельбы сравнительные качества пироколлодийного пороха и пороха на смесевом пироксилине. В состав комиссии вошли специалисты по взрывчатым веществам, порохам и баллистике от сухопутного и морского ведомства (Сухинский, Забудский, Киснемский, Сапожников, Регель, Дымша, Бринк, Рубцов, Вуколов, Каменев и Ремесников).

В результате длительной подготовки к проведению опытов, затяжки и прекращения их в связи с русско-японской войной 1904-1905 гг, вопрос о пироколлодийном порохе оставался нерешенным в течение десяти лет.
Только в 1909 г. Артиллерийский комитет Главного артиллерийского управления принял постановление: «преимущества пироколлодийного пороха не столь существенные, чтобы переходить к его изготовлению на казенных заводах, которые приспособлены к изготовлению пироксилинового пороха».

По мнению некоторых специалистов (например, Н. С. Пужай), которые получали пороха из американского пироколлодия после первой мировой войны, одной из причин непринятия на вооружение пороха Д. И. Менделеева являлась трудность переработки пироколлодия на порох.

При применении пироколлодия необходимо тщательное соблюдение технологического режима. Недопустимы значительные колебания в количестве растворителя и соотношения спирта к эфиру. Требуются более строго регламентированные характеристики самого пироколлодия (растворимость, вязкость и др.).

Несоблюдение этих условий приводит к изменению упругих свойств пороховой массы, появлению каучукоподобных свойств сырого пороха, наличию расширенных каналов, разнообразию в толщине горящего свода и другим недостаткам. Вместе с тем указанные причины не являлись, по нашему мнению, решающими, так как они могли быть при желание легко преодолены. Основной причиной, побудившей принять все меры, чтобы отклонить важнейшее открытие Д. И. Менделеева в области пороходелия, является преклонение руководящих чиновников Артиллерийского управления перед всем иностранным, игнорирование прогрессивными силами русской науки, их открытиями и изобретениями.

На Охтинском заводе все производство пироксилина было отдано на откуп приглашенному французскому инженеру Мессену, который не считался с мнением даже Д. И. Менделеева, заметившего недостатки производства,и вел дело согласно инструкции французского правительства. Естественное что и все пороховое производство на Охтинском заводе подгонялось под французский лад. Иностранцы настолько были в почете, что они могли безнаказанно присваивать себе русские изобретения. Об этом свидетельствует факт взятия патента в 1895 г. на «изобретение» пироколлодийного пороха американцами Бернадоу и Конверсом. Лейтенант Бернадоу в период работы Д. И. Менделеева над пироколлодийным порохом находился в Петербурге в качестве военно-морского атташе США и, несмотря на принятые тогда меры по соблюдению секретности, сумел получить полные сведения как о составе пороха, так и способе его производства, что подтверждается материалами доклада Бернадоу, прочитанного им в 1897 г. в американском военно-морском колледже. Этот факт наглого присвоения изобретения Д. И. Менделеева не вызвал в кругах чиновников Артиллерийского управления и русских специалистов пороховиков того времени никакого возмущения и опровержения. В связи с этим до сих пор в американской литературе, в частности в книге Девиса «Химия порохов и ВВ» издания 1943 г, указывается, что изобретателями пироколлодийного пороха являются лейтенант морского флота Бернадоу и капитан Конверс. Присвоение американскими дельцами открытия Д. И. Менделеева характеризует лишь алчный характер буржуазной науки, но оно не может затемнить величайшие заслуги Д. И. Менделеева в деле развития отечественного пороходелия.

Таким образом, в течение десятилетия 1885…1895 г.г. были получены четыре вида нитроцеллюлозных порохов — пироксилиновый порох Вьеля из смесевой нитроцеллюлозы, пироколлодийный порох Д. И. Менделеева, баллиститный нитроглицериновый порох Нобеля и кордитный нитроглицериновый порох Абеля и Дюара. Все эти пороха получили впоследствии название бездымных порохов коллоидного типа.

В Россий и Франции были приняты на вооружение пироксилиновые пороха, в Соединенных Штатах Америки — пироколлодийные пороха, в Германии и Италии — баллиститные пороха, в Англии — кордитные пороха. Необходимо заметить, что общие принципы производства нитроцеллюлозных порохов и качественный состав их в течение шести десятилетий не претерпели существенных изменений. Вместе с тем современные пороха имеют значительные отличия от своих предков по составу, форме и методам производства. За прошедшее время с момента появления нитроцеллюлозных порохов возникало очень много проблем в пороходелии, которые постепенно разрешались в научных лабораториях и на заводах.

Вскоре после изобретения нитроцеллюлозных порохов было замечено, что они способны разлагаться при хранении их даже в обычных условиях, т.е. при нормальной температуре и относительной влажности воздуха. Специальными опытами по изучению продуктов разложения порохов при различных условиях было установлено, что пороха при своем разложении выделяют ряд кислых продуктов, способствующих дальнейшему разложению пороха. Наиболее опасными в этом отношении являются окислы азота, азотная и азотистая кислоты.

Поэтому возникла идея связать эти вредные продукты при помощи добавки к пороху некоторых веществ и предотвратить этим ускоренное (или как сейчас принято говорить автокаталитическое) разложение пороха.

Вся реализуемая пиротехника сертифицирована, и соответствует 1-3 классу опасности, разрешена к розничной продаже и безопасна для здоровья при соблюдении инструкции по применению.