Инструмент электрика

Минимальная относительная погрешность косвенных измерений. Теория ошибок. Методические указания по определению погрешностей при измерениях в лабораторном практикуме по физике

В большинстве случаев в ходе эксперимента несколькими приборами измеряются несколько величин и для получения конечного результата эти измерения необходимо обработать, используя математические операции: сложения, умножения и т.д. Поэтому необходимо оценивать точность опыта в целом с помощью вычисления предельной и среднеквадратической ошибок опыта.

Правила вычисления предельной относительной ошибки опыта:

1. Ошибка суммы заключена между наибольшей и наименьшей из относительных ошибок слагаемых. Обычно учитывается или наибольшая ошибка или средняя арифметическая величина (в лабораторной работе будем пользоваться средней арифметической величиной).

2. Ошибка произведения или частного равна сумме относительных ошибок сомножителей или соответственно делимого и делителя.

3. Ошибка n -ой степени основания в n раз больше относительной ошибки основания.

Для вычисления среднеквадратической ошибки результата косвенных измерений необходимо обеспечить независимость результатов измерений. В этом случае среднеквадратическая ошибка вычисления величины W , являющейся функцией измеряемых прямо параметров x , y , z , … определяется формулой:

где - частные производные функции вычисленные при средних значениях параметров x , y , z , …, - исправленные дисперсии соответственно x , y , z , ….

Пример . Определение погрешности косвенных измерений

В результате многократных измерений были получены средние значения и среднеквадратические ошибки 3-х взаимно независимых параметров:

а) предельную относительную ошибку измерений и предельную относительную ошибку определения функции

б) среднее значение и среднеквадратическую ошибку определения функции

а) Найдём предельные относительные ошибки измерений x , y , z по формуле (13):

Предельную относительную ошибку определения функции

Найдём по правилам вычисления предельной относительной ошибки опыта:

б) Вычислим среднее значение функции

Для вычисления среднеквадратической ошибки определения функции по формуле (14) найдём частные производные:

и вычислим их при средних значениях x , y , z :

Подставляя в формулу (14), получим:

4. Расчёт характеристик линейной регрессионной модели

Одним из эффективных методов установления взаимосвязей между факторами является корреляционно-регрессионный анализ.

Задача корреляционно-регрессионного метода заключается в нахождении эмпирического уравнения, характеризующего связь результативного параметра Y c определённым входным фактором Х .

В качестве формы связи Y и X широко используют линейную зависимость в силу её простоты в расчётах, а также в связи с тем, что к ней можно привести многие другие виды зависимости.

Расчёт линейной регрессионной модели включает следующие этапы:

1. Расчёт теоретического уравнения линейной регрессии;

2. Оценка силы связи, расчёт коэффициента корреляции;

3. Оценка значимости коэффициента корреляции;

4. Оценка значимости коэффициентов уравнения регрессии;

5. Определение адекватности уравнения регрессии и доверительных границ.

Линейная регрессия Y на X имеет вид:

где α и β - параметры регрессии (β называется коэффициентом регрессии).

Статистические оценки и параметров регрессии α и β выбираются таким образом, чтобы значения вычисленные по формуле были как можно ближе к эмпирическим значениям . В качестве меры близости выбирают сумму квадратов отклонений . Метод нахождения параметров с помощью минимизации суммы квадратов отклонений эмпирических значений от теоретических значений в тех же точках называют методом наименьших квадратов.

Оптимальные значения параметров, полученные согласно этому методу, определяются формулами:

где и - средние значения X и Y , которые вычисляют по формулам:

Учитывая (15), запишем эмпирическую линию регрессии в виде:

Силу линейной корреляционной зависимости Y и X характеризует коэффициент корреляции r . Коэффициент r изменяется в пределах от до 1. Чем ближе он к , тем сильнее линейная связь Y и X , в предельном случае, если , имеет место точная линейная функциональная зависимость Y от X . Если , то Y и X не коррелируют. Оценкой коэффициента корреляции r служит выборочный коэффициент корреляции , который вычисляется по формуле:

Коэффициент корреляции определяемый по выборочным данным, может не совпадать с действительным значением, соответствующим генеральной совокупности. Для проверки статистической гипотезы о значимости выборочного коэффициента корреляции используют t -критерий Стьюдента, наблюдаемое значение которого вычисляется по формуле:

Критическое значение t -критерия для числа степеней свободы и уровня значимости α находят по таблицам критических точек распределения Стьюдента . Если , то предположение о нулевом значении коэффициента корреляции не подтверждается, и выборочный коэффициент корреляции значим. Если , то величина r близка к нулю.

Для оценки параметров, входящих в уравнение регрессии (16) , при решении практических задач можно ограничиться построением доверительных интервалов. Для заданной надёжности γ доверительные интервалы для параметров и β определяются формулами:

где - критическое значение t -критерия для числа степеней свободы и уровня значимости , которое находят по таблицам критических точек распределения Стьюдента , - квадратный корень из остаточной дисперсии , которая находится по формуле:

После получения эмпирического уравнения регрессии, проверяют насколько оно соответствует результатам наблюдений. Для проверки гипотезы о значимости уравнения регрессии используют F -критерий Фишера, наблюдаемое значение которого вычисляют по формуле:

где - исправленная дисперсия Y , которая вычисляется по формуле:

Критическое значение F -критерия для числа степеней свободы и и уровня значимости α находят по таблицам критических точек распределения Фишера-Снедекора . Если , то гипотеза о незначимости уравнения регрессии не подтверждается, и уравнение соответствует результатам наблюдений. Если , то полученное уравнение незначимо.

Ещё одной характеристикой меры того, насколько эмпирическое уравнение хорошо описывает данную систему наблюдений, является коэффициент детерминации d , который вычисляется по формуле:

Чем ближе коэффициент d к единице, тем лучше описание.

После того как модель построена, она используется для анализа и прогноза. Прогноз осуществляется подстановкой фактора в уравнение (17). Получается точечная оценка :

Доверительный интервал для прогнозируемого значения имеет вид:

где - критическое значение t -критерия для числа степеней свободы и уровня значимости , которое находят по таблицам критических точек распределения Стьюдента .

Пример. Построение модели линейной регрессии

По данным наблюдений определить параметры линейного уравнения регрессии Y на X . Найти коэффициенты регрессии и корреляции проверить гипотезу о значимости выборочного коэффициента корреляции. Найти доверительные интервалы для параметров уравнения регрессии. Определить коэффициент детерминации. Проверить гипотезу о значимости полученного уравнения регрессии. Найти прогнозируемое моделью значение y при x=x 0 и найти для него доверительный интервал. Уровень значимости принять равным 0,05.

X
Y 0,5 0,7 0,9 1,1 1,4 1,4 1,7 1,9

Для получения параметров уравнения регрессии составим таблицу. Таблица 2

0,5 0,7 0,9 1,1 1,4 1,4 1,7 1,9 -40 -28 -11 -0,7 -0,5 -0,3 -0,1 0,2 0,2 0,5 0,7 0,49 0,25 0,09 0,01 0,04 0,04 0,25 0,49 3,3 -0,2 1,8 2,6 10,5 23,8 0,43 0,661 0,998 1,239 1,373 1,450 1,604 1,854 0,0049 0,0015 0,0077 0,0193 0,0007 0,0025 0,0092 0,0021
9,6 1,66 83,8 0,0479

В последней строке таблицы приведены суммы столбцов, используемых в расчётах.

Найдём средние значения X и Y по формуле (16):

Вычислим коэффициент регрессии по формуле (15):

И получим эмпирическое уравнение регрессии, подставляя в (17):

По формуле (28) вычислим теоретические значения и заполним два последних столбца таблицы 2.

Вычислим коэффициент корреляции по формуле (18):

И проверим гипотезу о его значимости. Наблюдаемое значение критерия найдём по формуле (19):

По таблице критических точек распределения Стьюдента найдём критическую точку распределения Стьюдента с числом степеней свободы и уровнем значимости Получим и сравним и : следовательно, коэффициент корреляции значим, и Y и X связаны линейной корреляционной зависимостью.

Для определения доверительных интервалов параметров уравнения линейной регрессии (28) найдём остаточную дисперсию по формуле (22):

Подставляя в формулу (20), получим доверительный интервал для Вычисляя, получим интервальную оценку для с надёжностью

Доверительный интервал для получим по формуле (21):

Итак, интервальная оценка для параметра с надёжностью

Проверим гипотезу о значимости полученного уравнения регрессии. Для вычисления наблюдаемого значения F -критерия найдём исправленную дисперсию Y по формуле (24): Подставляя в формулу (23), получим: По таблице критических точек распределения Фишера-Снедекора для числа степеней свободы и на уровне значимости найдём Сравнивая наблюдаемое и критическое значения F -критерия, получим следовательно, уравнение значимо.

Для оценки адекватности линейной модели наблюдаемым значениям найдём также коэффициент детерминации по формуле (25):

Этот результат истолковывается так: 97,1% изменчивости Y объясняется изменением фактора X , а на остальные случайные факторы приходится 2,9% изменчивости. Однако, этот вывод действителен только для рассматриваемого интервала значений X .

Используем уравнение (28) для прогноза. При точечную оценку для y получим путём подстановки в формулу (28): Доверительный интервал для получим по формуле (27):

Окончательно, интервальная оценка для с надёжностью

Пусть известны две независимо измеренных физических величины и с погрешностями и соответственно. Тогда справедливы следующие правила:

1. Абсолютная погрешность суммы (разности) есть сумма абсолютных погрешностей. То есть, если

Более разумная (учитывающая то, что величины и независимы и маловероятно, что их истинные значения одновременно окажутся на краях диапазонов) оценка получается по формуле:

На всех школьных олимпиадах допускается применение любой из этих двух формул. Аналогичные формулы справедливы для случая нескольких (более двух) слагаемых.

Пример:

Пусть величина , ,

.

2. Относительная погрешность произведения (частного) есть сумма относительных погрешностей.

То есть, если

Как и в предыдущем случае, более разумной будет формула

Аналогичные формулы справедливы для случая нескольких (более двух) множителей.

Таким образом, в результате сложения двух величин сначала вычисляется абсолютная погрешность величины, а после этого может быть вычислена относительная погрешность.

Пример:

Пусть величина , ,


3. Правило для возведения в степень. Если , то .

Пример:


4. Правило умножения на константу. Если .

Пример:

5. Более сложные функции величин разбиваются на более простые вычисления, погрешности которых можно рассчитать по формулам представленным выше.

Пример:

Пусть

6. Если расчётная формула сложна и не сводиться к описанным выше случаем, то, школьники знакомые с понятием частной производной могут найти погрешность косвенного измерения следующим образом: пусть , тогда

или более простой оценкой:

Пример:

Пусть

7. Школьники, не знакомые с производными, могут пользоваться методом границ, который состоит в следующем: пусть нам известно, что и для каждой величины диапазон в котором лежит её истинное значение. Рассчитаем минимальное и максимальное возможное значение величины на области задания величин :

За абсолютную погрешность величины возьмём полуразность максимального и минимального значения:

Пример:

Пусть

Правила округления

При обработке результатов измерений часто приходится производить округление. При этом нужно следить, чтобы ошибка, возникающая при округлении, была хотя бы на порядок меньше остальных погрешностей. Однако оставлять слишком много значащих цифр тоже неправильно, поскольку влечёт за собой потерю драгоценного времени. В большинстве случаев бывает достаточно погрешность округлить до двух значащих цифр, а результат до того же порядка, что и погрешность. При записи же конечного ответа принято оставлять в погрешности только одну значащую цифру, за исключением случая, когда эта цифра единица, тогда нужно оставить две значащих цифры в погрешности. Также часто порядок числа выносится за скобку, таким образом, чтобы первая значащая цифра числа осталась либо в порядке единиц, либо в порядке десятых.



Например, пусть были проведены измерения модуля Юнга стали и Алюминия и были получены следующие значения (до округления):

, , , .

Правильно записанный конечный ответ тогда будет иметь вид:

Построение графиков

Во многих задачах, предлагаемых на физических олимпиадах школьников, требуется снять зависимость одной физической величины от другой, а затем проанализировать эту зависимость (сравнить экспериментальную зависимость с теоретической, определить неизвестные параметры теоретической зависимости). График является наиболее удобным и наглядным способом представления данных и их дальнейшего анализа. Поэтому в критериях оценивания большинства экспериментальных задач присутствуют баллы за график, даже если построение графика не требуется явно в условии. Таким образом, если при решении задачи Вы сомневаетесь нужно ли в данной задаче построение графика или нет - сделайте выбор в пользу графика.

Правила построения графика

1. График строится на миллиметровой бумаге. Если на экспериментальном туре олимпиады миллиметровая бумага не была предоставлена сразу, нужно попросить её у организаторов.

2. График нужно подписать в верхней части, чтобы всегда можно было установить, какой участник строил этот график. В работе следует указать, что был построен соответствующий график, на случай если график будет потерян во время проверки.



3. Ориентация миллиметровой бумаги может быть как альбомная, так и книжная.

4. На графике обязательно должны присутствовать координатные оси. Вертикальная ось проводится в левой части графика, а горизонтальная ось в нижней части.

5. Вертикальная ось должна соответствовать значениям функции, а горизонтальная – значениям аргумента.

6. Оси на графике рисуются с отступом 1-2см от края миллиметровой бумаги.

7. Каждая ось должна быть подписана, то есть должна быть указана физическая величина, отложенная вдоль этой оси, и (через запятую) единица её измерения. Записи вида « », « » и « » эквивалентны, но первые два варианта предпочтительнее. Горизонтальная ось подписывается слева у верхнего конца, а вертикальная снизу у правого конца.

8. Оси не обязательно должны пересекаться в точке (0,0).

9. Масштаб графика и положение начала отсчёта на координатных осях выбираются так, чтобы наносимые точки располагались по возможности на всей площади листа. При этом нули координатных осей могут вообще не попадать на график.

10. Линии, проведённые на миллиметровой бумаге через сантиметр, должны попадать на круглые значения величин. С графиком удобно работать, если 1 см на миллиметровой бумаги соответствуют 1, 2, 4, 5 *10 n единиц измерения по данной оси. Часть делений на оси нужно подписать. Подписанные деления должны находится на равном расстоянии друг от друга. Подписанных делений на оси должно быть не менее 4х и не более 10ти.

11. Точки на график нужно наносить так, чтобы они были чётко и ясно видны. Для того чтобы показать, что величина наносимая на график имеет погрешность, из каждой точки проводятся отрезки вверх и вниз, вправо и влево. Длина горизонтальных отрезков соответствует погрешности величины, отложенной по горизонтальной оси, длина вертикальных отрезков - погрешности величины, отложенной по вертикальной. Таким образом, обозначаются области определения экспериментальной точки, называемые крестами ошибок. Кресты ошибок обязательны к нанесению на графике, за исключением случаев: в условии задачи дано непосредственное указание не оценивать погрешности, погрешность составляет меньше 1 мм в масштабе соответствующей оси. В последнем случае необходимо указать, что погрешность значений слишком мала для нанесения по этой оси. В таких случаях считается, что размер точки соответствует ошибке измерения.

12. Стремитесь к тому, чтобы ваш график был удобен, понятен и аккуратен. Стройте его карандашом, чтобы можно было исправить ошибки. Не подписывайте рядом с точкой соответствующее ей значение - это загромождает график. Если на одном графике показано сразу несколько зависимостей, используйте разные символы или цвета для точек. Для определения, какой тип экспериментальных точек, какой зависимости соответствует, используйте легенду графика. На графике допускаются зачёркивания (если подвёл ластик или под рукой не оказалось хорошего карандаша), но делать их нужно аккуратно. Не стоит использовать штрих-корректор - это выглядит некрасиво.

Примечание: все вышеперечисленные правила происходят исключительно из соображений удобства работы с графиком. Однако, при проверке работ на олимпиадах жюри пользуются этими правилами как формальными критериями: плохо выбран масштаб - минус полбалла. Поэтому на олимпиаде следует неукоснительно придерживаться этих правил.

Пример:

Справа приведен график, построенный не по критериям, а слева, построенный по указанным выше правилам.

Погрешности измерений физических величин

1.Введение(измерения и погрешности измерений)

2.Случайные и систематические погрешности

3.Абсолютные и относительные погрешности

4.Погрешности средств измерений

5.Класс точности электроизмерительных приборов

6.Погрешность отсчета

7.Полная абсолютная погрешность прямых измерений

8.Запись окончательного результата прямого измерения

9.Погрешности косвенных измерений

10.Пример

1. Введение(измерения и погрешности измерений)

Физика как наука родилась более 300 лет назад, когда Галилей по сути создал научный изучения физических явлений: физические законы устанавливаются и проверяются экспериментально путем накопления и сопоставления опытных данных, представляемых набором чисел, формулируются законы языком математики, т.е. с помощью формул, связывающих функциональной зависимостью числовые значения физических величин. Поэтому физика- наука экспериментальная, физика- наука количественная.

Познакомимся с некоторыми характерными особенностями любых измерений.

Измерение- это нахождение числового значения физической величины опытным путем с помощью средств измерений (линейки, вольтметра, часы и т.д.).

Измерения могут быть прямыми и косвенными.

Прямое измерение- это нахождение числового значения физической величины непосредственно средствами измерений. Например, длину - линейкой, атмосферное давление- барометром.

Косвенное измерение- это нахождение числового значения физической величины по формуле, связывающей искомую величину с другими величинами, определяемыми прямыми измерениями. Например сопротивление проводника определяют по формуле R=U/I, где U и I измеряются электроизмерительными приборами.

Рассмотрим пример измерения.



Измерим длину бруска линейкой (цена деления 1 мм). Можно лишь утверждать, что длина бруска составляет величину между 22 и 23 мм. Ширина интервала “неизвестности составляет 1мм, те есть равна цене деления. Замена линейки более чувствительным прибором, например штангенциркулем снизит этот интервал, что приведет к повышению точности измерения. В нашем примере точность измерения не превышает 1мм.

Поэтому измерения никогда не могут быть выполнены абсолютно точно. Результат любого измерения приближенный. Неопределенность в измерении характеризуется погрешностью - отклонением измеренного значения физической величины от ее истинного значения.

Перечислим некоторые из причин, приводящих к появлению погрешностей.

1. Ограниченная точность изготовления средств измерения.

2. Влияние на измерение внешних условий (изменение температуры, колебание напряжения...).

3. Действия экспериментатора (запаздывание с включением секундомера, различное положение глаза...).

4. Приближенный характер законов, используемых для нахождения измеряемых величин.

Перечисленные причины появления погрешностей неустранимы, хотя и могут быть сведены к минимуму. Для установления достоверности выводов, полученных в результате научных исследований существуют методы оценки данных погрешностей.

2. Случайные и систематические погрешности

Погрешности, возникаемые при измерениях делятся на систематические и случайные.

Систематические погрешности- это погрешности, соответствующие отклонению измеренного значения от истинного значения физической величины всегда в одну сторону (повышения или занижения). При повторных измерениях погрешность остается прежней.

Причины возникновения систематических погрешностей:

1) несоответствие средств измерения эталону;

2) неправильная установка измерительных приборов (наклон, неуравновешенность);

3) несовпадение начальных показателей приборов с нулем и игнорирование поправок, которые в связи с этим возникают;

4) несоответствие измеряемого объекта с предположением о его свойствах (наличие пустот и т.д).

Случайные погрешности- это погрешности, которые непредсказуемым образом меняют свое численное значение. Такие погрешности вызываются большим числом неконтролируемых причин, влияющих на процесс измерения (неровности на поверхности объекта, дуновение ветра, скачки напряжения и т.д.). Влияние случайных погрешностей может быть уменьшено при многократном повторении опыта.

3. Абсолютные и относительные погрешности

Для количественной оценки качества измерений вводят понятия абсолютной и относительной погрешностей измерений.

Как уже говорилось, любое измерение дает лишь приближенное значение физической величины, однако можно указать интервал, который содержит ее истинное значение:

А пр - D А < А ист < А пр + D А

Величина D А называется абсолютной погрешностью измерения величины А. Абсолютная погрешность выражается в единицах измеряемой величины. Абсолютная погрешность равна модулю максимально возможного отклонения значения физической величины от измеренного значения. А пр - значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений.

Но для оценки качества измерения необходимо определить относительную погрешность e . e = D А/А пр или e= (D А/А пр)*100%.

Если при измерении получена относительная погрешность более 10%, то говорят, что произведена лишь оценка измеряемой величины. В лабораториях физического практикума рекомендуется проводить измерения с относительной погрешностью до 10%. В научных лабораториях некоторые точные измерения (например определение длины световой волны), выполняются с точностью миллионных долей процента.

4. Погрешности средств измерений

Эти погрешности называют еще инструментальными или приборными. Они обусловлены конструкцией измерительного прибора, точностью его изготовления и градуировки. Обычно довольствуются о допустимых инструментальных погрешностях, сообщаемых заводом изготовителем в паспорте к данному прибору. Эти допустимые погрешности регламентируются ГОСТами. Это относится и к эталонам. Обычно абсолютную инструментальную погрешность обозначают D иА.

Если сведений о допустимой погрешности не имеется (например у линейки), то в качестве этой погрешности можно принять половину цены деления.

При взвешивании абсолютная инструментальная погрешность складывается из инструментальных погрешностей весов и гирь. В таблице приведены допустимые погрешности наиболее часто

встречающихся в школьном эксперименте средств измерения.

Средства измерения

Предел измерения

Цена деления

Допустимаяпогрешность

линейка ученическая

линейка демонстрационная

лента измерительная

мензурка

гири 10,20, 50 мг

гири 100,200 мг

гири 500 мг

штангенциркуль

микрометр

динамометр

весы учебные

Секундомер

1с за 30 мин

барометр-анероид

720-780 мм рт.ст.

1 мм рт.ст

3 мм рт.ст

термометр лабораторный

0-100 градусов С

амперметр школьный

вольтметр школьный

5. Класс точности электроизмерительных приборов

Стрелочные электроизмерительные приборы по допустимым значениям погрешностям делятся на классы точности, которые обозначены на шкалах приборов числами 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности g пр прибора показывает, сколько процентов составляет абсолютная погрешность от всей шкалы прибора.

g пр = (D и А/А макс)*100% .

Например абсолютная инструментальная погрешность прибора класса 2,5 составляет 2,5% от его шкалы.

Если известен класс точности прибора и его шкала, то можно определить абсолютную инструментальную погрешность измерения

D иА=( g пр * А макс)/100.

Для повышения точности измерения стрелочным электроизмерительным прибором надо выбирать прибор с такой шкалой, чтобы в процессе измерения располагались во второй половине шкалы прибора.

6. Погрешность отсчета

Погрешность отсчета получается от недостаточно точного отсчитывания показаний средств измерений.

В большинстве случаев абсолютную погрешность отсчета принимают равной половине цены деления. Исключения составляют измерения стрелочными часами (стрелки передвигаются рывками).

Абсолютную погрешность отсчета принято обозначать D оА

7. Полная абсолютная погрешность прямых измерений

При выполнении прямых измерений физической величины А нужно оценивать следующие погрешности: D иА, D оА и D сА (случайную). Конечно, иные источники ошибок, связанные с неправильной установкой приборов, несовмещение начального положения стрелки прибора с 0 и пр. должны быть исключены.

Полная абсолютная погрешность прямого измерения должна включать в себя все три вида погрешностей.

Если случайная погрешность мала по сравнению с наименьшим значением, которое может быть измерено данным средством измерения (по сравнению с ценой деления), то ее можно пренебречь и тогда для определения значения физической величины достаточно одного измерения. В противном случае теория вероятностей рекомендует находить результат измерения как среднее арифметическое значение результатов всей серии многократных измерений, погрешность результата вычислять методом математической статистики. Знание этих методов выходит за пределы школьной программы.

8. Запись окончательного результата прямого измерения

Окончательный результат измерения физической величины А следует записывать в такой форме;

А=А пр + D А, e= (D А/А пр)*100%.

А пр - значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений. D А- полная абсолютная погрешность прямого измерения.

Абсолютную погрешность обычно выражают одной значащей цифрой.

Пример: L=(7,9 + 0,1) мм, e=13%.

9. Погрешности косвенных измерений

При обработке результатов косвенных измерений физической величины, связанной функционально с физическими величинами А, В и С, которые измеряются прямым способом, сначала определяют относительную погрешность косвенного измерения e= D Х/Х пр, пользуясь формулами, приведенными в таблице (без доказательств).

Абсолютную погрешность определяется по формуле D Х=Х пр *e,

где e выражается десятичной дробью, а не в процентах.

Окончательный результат записывается так же, как и в случае прямых измерений.

Вид функции

Формула

Х=А+В+С

Х=А-В


Х=А*В*С



Х=А n

Х=А/В

Пример: Вычислим погрешность измерения коэффициента трения с помощью динамометра. Опыт заключается в том, что брусок равномерно тянут по горизонтальной поверхности и измеряют прикладываемую силу: она равна силе трения скольжения.

С помощью динамометра взвесим брусок с грузами: 1,8 Н. F тр =0,6 Н

μ=0,33.Инструментальная погрешность динамометра (находим по таблице) составляет Δ и =0,05Н, Погрешность отсчета (половина цены деления)

Δ о =0,05Н.Абсолютная погрешность измерения веса и силы трения 0,1 Н.

Относительная погрешность измерения (в таблице 5-я строчка)

, следовательно абсолютная погрешность косвенного измерения μ составляет0,22*0,33=0,074

В лабораторной практике большинство измерений – косвенные и интересующая нас величина является функцией одной или нескольких непосредственно измеряемых величин:

N = ƒ (x, y, z, ...) (13)

Как следует из теории вероятностей, среднее значение величины определяется подстановкой в формулу (13) средних значений непосредственно измеряемых величин, т.е.

¯ N = ƒ (¯ x, ¯ y, ¯ z, ...) (14)

Требуется найти абсолютную и относительную ошибки этой функции, если известны ошибки независимых переменных.

Рассмотрим два крайних случая, когда ошибки являются либо систематическими, либо случайными. Единого мнения относительно вычисления систематической ошибки косвенных измерений нет. Однако, если исходить из определения систематической ошибки как максимально возможной ошибки, то целесообразно находить систематическую ошибку по формулам

(15) или

где

частные производные функции N = ƒ(x, y, z, ...) по аргументу x, y, z..., найденные в предположении, что все остальные аргументы, кроме того, по которому находится производная, постоянные;
δx, δy, δz – систематические ошибки аргументов.

Формулой (15) удобно пользоваться в случае, если функция имеет вид суммы или разности аргументов. Выражение (16) применять целесообразно, если функция имеет вид произведения или частного аргументов.

Для нахождения случайной ошибки косвенных измерений следует пользоваться формулами:

(17) или

где Δx, Δy, Δz, ... – доверительные интервалы при заданных доверительных вероятностях (надежностях) для аргументов x, y, z, ... . Следует иметь в виду, что доверительные интервалы Δx, Δy, Δz, ... должны быть взяты при одинаковой доверительной вероятности P 1 = P 2 = ... = P n = P.

В этом случае надежность для доверительного интервала ΔN будет тоже P.

Формулой (17) удобно пользоваться в случае, если функция N = ƒ(x, y, z, ...) имеет вид суммы или разности аргументов. Формулой (18) удобно пользоваться в случае, если функция N = ƒ(x, y, z, ...) имеет вид произведения или частного аргументов.

Часто наблюдается случай, когда систематическая ошибка и случайная ошибка близки друг к другу, и они обе в одинаковой степени определяют точность результата. В этом случае общая ошибка ∑ находится как квадратичная сумма случайной Δ и систематической δ ошибок с вероятностью не менее чем P, где P – доверительная вероятность случайной ошибки:

При проведении косвенных измерений в невоспроизводимых условиях функцию находят для каждого отдельного измерения, а доверительный интервал вычисляют для получения значений искомой величины по тому же методу, что и для прямых измерений.

Следует отметить, что в случае функциональной зависимости, выраженной формулой, удобной для логарифмирования, проще сначала определить относительную погрешность, а затем из выражения ΔN = ε ¯ N найти абсолютную погрешность.

Прежде чем приступать к измерениям, всегда нужно подумать о последующих расчетах и выписать формулы, по которым будут рассчитываться погрешности. Эти формулы позволят понять, какие измерения следует производить особенно тщательно, а на какие не нужно тратить больших усилий.

При обработке результатов косвенных измерений предлагается следующий порядок операций:
  1. Все величины, находимые прямыми измерениями, обработайте в соответствии с правилами обработки результатов прямых измерений. При этом для всех измеряемых величин задайте одно и то же значение надежности P.
  2. Оцените точность результата косвенных измерений по формулам (15) – (16), где производные вычислите при средних значениях величин.
    Если ошибка отдельных измерений входит в результат дифференцирования несколько раз, то надо сгруппировать все члены, содержащие одинаковый дифференциал, и выражения в скобках, стоящие перед дифференциалом взять по модулю ; знак d заменить на Δ (или δ).
  3. Если случайная и систематическая ошибки по величине близки друг к другу, то сложите их по правилу сложения ошибок. Если одна из ошибок меньше другой в три или более раз, то меньшую отбросьте.
  4. Результат измерения запишите в виде:

    N = ƒ (¯ x, ¯ y, ¯ z, ...) ± Δƒ.

  5. Определите относительную погрешность результата серии косвенных измерений

    ε = Δƒ · 100%.
    ¯¯ ƒ¯

    Приведем примеры расчета ошибки косвенного измерения.

    Пример 1. Находится объем цилиндра по формуле

    V = π d 2 h ,

    ¯¯¯ 4¯¯

    где d – диаметр цилиндра, h – высота цилиндра.

    Обе эти величины определяются непосредственно. Пусть измерение этих величин дало следующие результаты:

    d = (4.01 ± 0.03) мм ,

    h = (8.65 ± 0.02) мм, при одинаковой надежности Р = 0.95.

    Среднее значение объема, согласно (14) равно

    V = 3.14 · (4.01) 2 · 8.65 = 109.19 мм

    ¯¯¯¯¯¯¯¯¯ 4¯¯¯¯¯¯¯¯

    Воспользовавшись выражением (18) имеем:

    ln V = ln π + 2 lnd + lnh - ln4;

    ;

    Так как измерения производились микрометром, цена деления которого 0.01 мм , систематические ошибки
    δd = δh = 0.01 мм. На основании (16) систематическая ошибка δV будет

    Систематическая ошибка оказывается сравнимой со случайной, следовательно

При обработке результатов косвенных измерений физической величины, связанной функционально с физическими величинами А, В и С, которые измеряются прямым способом, сначала определяют относительную погрешность косвенного измерения e= DХ/Х пр, пользуясь формулами, приведенными в таблице (без доказательств).

Абсолютную погрешность определяется по формуле DХ=Х пр *e,

где e выражается десятичной дробью, а не в процентах.

Окончательный результат записывается так же, как и в случае прямых измерений

Вид функции Формула
Х=А+В+С
Х=А-В
Х=А*В*С
Х=А n
Х=А/В
Х=

(+ http://fiz.1september.ru/2001/16/no16_01.htm полезно) Как правильно проводить измерения http://www.fizika.ru/fakultat/index.php?theme=01&id=1220

Пример: Вычислим погрешность измерения коэффициента трения с помощью динамометра. Опыт заключается в том, что брусок равномерно тянут по горизонтальной поверхности и измеряют прикладываемую силу: она равна силе трения скольжения.

С помощью динамометра взвесим брусок с грузами: 1,8 Н. F тр =0,6 Н

μ=0,33. Инструментальная погрешность динамометра (находим по таблице) составляет Δ и =0,05Н, Погрешность отсчета (половина цены деления)

Δ о =0,05Н. Абсолютная погрешность измерения веса и силы трения 0,1 Н.

Относительная погрешность измерения (в таблице 5-я строчка)

Следовательно абсолютная погрешность косвенного измерения μ составляет 0,22*0,33=0,074

Ответ:

Измерить физическую величину - значит сравнить ее с другой однородной величиной, принятой за единицу измерения. Измерение может быть произведено с помощью:

1. мер, представляющих собой образцы единицы измерения (метр, гиря, литровый сосуд и т.п.),

2. измерительных приборов (амперметр, манометр и т.п.),

3. измерительных установок, под которыми понимают совокупность мер, измерительных приборов и вспомогательных элементов.

Измерения бывают прямые и косвенные. В прямых измерениях физическая величина измеряется непосредственно. Прямыми измерениями являются, например, измерение длины линейкой, времени - секундомером, силы тока - амперметром.

В косвенных измерениях непосредственно измеряют не ту величину, значение которой нужно узнать, а другие величины, с которыми искомая величина связана определенной математической зависимостью. Например, плотность тела определяют по измерению его массы и объема, а сопротивление - по измерению силы тока и напряжения.



В силу несовершенства мер и измерительных приборов, а также наших органов чувств, измерения не могут быть выполнены точно, т.е. всякое измерение дает лишь приближенный результат. Кроме того, часто причиной отклонения результатов измерений является природа самой измеряемой величины. Например, температура, измеряемая термометром или термопарой в определенной точке печи, колеблется вследствие конвекции и теплопроводности в определенных пределах. Мерой оценки точности результата измерения служит погрешность измерения (ошибка измерения) .

Для оценки точности указывают либо абсолютную погрешность, либо относительную погрешность измерения. Абсолютная погрешность выражается в единицах измеряемой величины. Например, отрезок пути, пройденный телом, , измерен с абсолютной погрешностью . Относительная погрешность измерения - это отношение абсолютной погрешности к значению измеряемой величины. В приведенном примере относительная погрешность равна . Чем меньше погрешность измерения, тем выше его точность.

По источникам своего происхождения погрешности измерения подразделяют на систематические, случайные и грубые (промахи).

1. Систематические погрешности - погрешности измерения, величина которых остается постоянной при повторных измерениях, проводимых одним и тем же методом, с помощью одних и тех же измерительных приборов. Причинами систематических погрешностей являются:



· неисправности, неточности измерительных приборов

· неправомерность, неточность использованной методики измерения

Примером систематических погрешностей может быть измерение температуры термометром со смещенной нулевой точкой, измерение тока неправильно отградуированным амперметром, взвешивание тела на весах при помощи гирь без учета выталкивающей силы Архимеда.

Для устранения или уменьшения систематических погрешностей надо тщательно проверить измерительные приборы, произвести измерение одних и тех же величин разными методами, вводить поправки, когда ошибки заведомо известны (поправки на выталкивающую силу, поправки на показания термометра).

2. Грубые ошибки (промахи) - существенное превышение величины погрешности, ожидаемой при данных условиях измерения. Промахи появляются в результате неправильной записи показаний прибора, неправильного отсчета по прибору, из-за ошибки в расчетах при косвенных измерениях. Источник промахов - невнимательность экспериментатора. Путь устранения этих погрешностей - аккуратность экспериментатора, исключение переписывания протоколов измерения.

3. Случайные погрешности - погрешности, величина которых меняется случайным образом при повторных измерениях одной и той же величины одним и тем же методом при помощи тех же приборов. Источником случайных погрешностей является неконтролируемая невоспроизводимость условий измерения. Например, во время измерения неконтролируемым образом может меняться температура, влажность, атмосферное давление, напряжение в электрической сети, состояния органов чувств экспериментатора. Исключить случайные погрешности нельзя. При многократных измерениях случайные ошибки подчиняются статистическим законам, и их влияние можно учесть.