Теплый пол

Сбор нагрузок на ленточный фундамент пример. Сбор нагрузок на фундамент: определение, как посчитать, примеры расчетов. Определение момента по обрезу фундамента

Сбор нагрузок на фундамент – один из важных этапов проектирования. Он позволит подобрать оптимальный вариант фундамента с учетом особенностей почвы на участке, планировки будущего строения, его особенностей, этажности, материалов строительства и отделки. Это поможет увеличить срок службы здания и избежать его деформации.

Особенности

Сами по себе нагрузки на фундамент различаются по продолжительности воздействия и могут быть временными или постоянными. К постоянным нагрузкам относятся стены, перегородки, перекрытия, кровля. К временным можно отнести мебель, оборудование (относятся к подгруппе длительных нагрузок) и погодные условия – воздействие снега, ветра (кратковременные).

Прежде чем осуществлять сбор нагрузок, необходимо провести некоторые мероприятия, а именно:

  1. составить подробный план будущей постройки, включить в него все простенки;
  2. определиться, будет ли оборудован дом подвалом, и если будет – какова должна быть его глубина;
  3. четко определить высоту цоколя и подобрать материалы, которые будут использоваться при его изготовлении;
  4. определиться с утеплителем, гидроизоляцией, защитой от ветра, отделочными материалами – как внутренними, так и наружными, и с их толщиной.

Все это поможет наиболее точно рассчитать все нагрузки, а значит избежать перекоса, изгиба, просадки, выгиба, крена или смещения здания. Об увеличении срока эксплуатации, долговечности и надежности постройки не стоит упоминать – очевидно, что все эти показатели только выиграют при правильном проведении расчетов.

Кроме того, расчет нагрузки поможет правильно подобрать геометрические формы, подошву фундамента и ее площадь.

От чего зависит?

Нагрузка на фундамент – это сочетание ряда факторов.

К ним относится:

  • то, в каком регионе будет осуществляться строительство;
  • каков грунт на выбранном участке;
  • насколько глубоко залегают грунтовые воды;
  • из каких материалов будут выполняться элементы;
  • какова планировка будущего здания, сколько в нем будет этажей, какая будет кровля.

Важно правильно определить почву на участке будущего строительства , поскольку она оказывает непосредственное влияние на долговечность фундамента, на то, какому типу опорной конструкции лучше отдать предпочтение и на глубину закладки. Например, если на месте стройки глинистая, суглинистая почва или супесь, то фундамент нужно будет укладывать на ту глубину, на которую промерзает почва зимой. Если же грунт крупноблочный или песчаный – это делать необязательно.

Правильно определить тип почвы можно при помощи СП «Нагрузки и воздействия» – документ, который необходим при расчете веса строения. В нем содержится подробная информация о том, какие нагрузки испытывает фундамент и каким образом их определять. Карты в СНиП «Строительная климатология» также помогут определить тип грунта. Несмотря на то, что данный документ отменен, он может быть очень полезен в частном строительстве как материал для ознакомления.

Помимо глубины, важно правильно определить необходимую ширину опорной конструкции. Она зависит от типа фундамента. Ширина ленточного и столбчатого фундаментов определяется исходя из ширины стен. Опорная часть плитного фундамента должна выходить за наружные границы стен на десять сантиметров. Если фундамент свайный – сечение определяется при помощи расчета, а его верхнюю часть – ростверк – подбирают исходя из того, какая нагрузка будет оказываться на фундамент и какая планируется толщина стен.

Кроме того, необходимо учесть и собственный вес опорной конструкции, расчет которого производится с учетом глубины промерзания, уровня залегания грунтовых вод и наличия или отсутствия подвала.

Если подвал не предусмотрен, подошва фундамента должна располагаться не меньше чем на 50 сантиметров выше грунтовых вод. Если же предполагается наличие подвала – основание должно располагаться на 30-50 сантиметров ниже пола.

Также немаловажное значение имеют динамические нагрузки. Это подгруппа временных нагрузок, которые оказывают на фундамент мгновенное или периодическое воздействие. Всевозможные машины, двигатели, молоты (например, штамповочные) – примеры динамических нагрузок. Они оказывают довольное сложное воздействие как на саму опорную конструкцию, так и на почву под ней. Если предполагается, что фундамент будет испытывать подобные нагрузки, их нужно особо учесть при расчете.

Как рассчитать?

Нагрузка на фундамент определяется совокупностью нагрузок всех составных элементов здания. Чтобы правильно высчитать это значение, нужно посчитать нагрузку стен, кровли, перекрытий, воздействие природных факторов, например, снега, сложить все это вместе и сравнить с тем значением, которое считается допустимым.

Не стоит забывать и о типе почвы, который оказывает прямое влияние на то, какой тип фундамента предпочесть и на какую глубину его закладывать. Например, если на участке очень подвижные и неравномерно сжимаемые почвы, можно использовать фундаментную плиту.

Для того чтобы определение нагрузки было максимально точным, необходимо собрать следующую информацию:

  • Какова форма и размер будущего дома.
  • Какой высоты будет цоколь, из каких материалов его планируется делать, какова будет наружная его отделка.
  • Данные по наружным стенам здания. Нужно учесть высоту, площадь, занимаемую в стенах фронтонами, оконными и дверными проемами, из каких материалов они будут сложены, какие материалы будут использоваться при наружной и внутренней отделке.
  • Перегородки внутри здания. Определяют их длину, высоту, площадь, которая будет занята дверными проемами, материал, из которого перегородки будут выполнены, и каким образом будет осуществлена их отделка. Отдельно собираются данные по несущим и не несущим конструкциям.
  • Крыша. Учитывают тип кровли, ее длину, ширину, высоту, материал изготовления.
  • Расположение утеплителя – на перекрытии чердака или в пространстве между стропилами.
  • Перекрытие цоколя (пол на первом этаже). Какого типа оно будет, какую будет иметь стяжку.
  • Перекрытие между первым и вторым этажами – те же данные, что и у цокольного перекрытия.
  • Перекрытие между вторым и третьим этажом (если планируется многоэтажное здание).
  • Перекрытие чердака.

Все эти данные помогут произвести точный расчет нагрузок и определить, соответствует ли полученная величина требованиям, которые предъявляет ГОСТ, или нет.

Заранее составленная схема здания, на которой будут указаны размеры самого здания и всех конструкций, поможет в произведении расчетов. Кроме того, нужно учесть удельный вес материалов, из которых сооружены стены, перекрытия, перегородки и материалы отделки.

Вам поможет таблица, где приведено значение массы для материалов, наиболее часто используемых в строительстве.

Тип конструкции

Керамический или силикатный полнотелый кирпич толщиной 380 мм (1,5 штуки)

684 кг на м2

510 мм (2 шт)

918 кг на м2

640 мм (2,5 шт)

1152 кг на м2

770 мм (3 шт)

1386 кг на м2

Керамический пустотелый кирпич. Толщина – 380 мм

532 кг на м2

714 кг на м2

896 кг на м2

1078 кг на м2

Силикатный пустотелый кирпич. Толщина – 380 мм

608 кг на м2

816 кг на м2

1024 кг на м2

1232 кг на м2

Сосновый брус толщиной 200 мм

104 кг на м2

156 кг на м2

Каркасный с утеплением 150 мм

Перегородки и внутренние стены

Керамический и силикатный полнотелый кирпич. Толщина 120 мм (250 мм)

216 (450) кг на м2

Керамический пустотелый кирпич. Толщина 120 (250) мм

168 (350) кг на м2

Гипсокартон. Толщина 80 мм без утеплителя (с утеплителем)

28 (34) кг на м2

Перекрытия

Сплошное железобетонное. Толщина 220 м. Стяжка – цементно-песчаная (30 мм)

625 кг на м2

Железобетонное из пустотных плит. Толщина 220 мм, стяжка – 30 мм

430 кг на м2

Деревянное. Высота балок 200 мм. С утеплителем, плотность которого не больше 100 кг на м3. Напольное покрытие – паркет, ламинат, линолеум, ковролин.

160 кг на м2

Керамическая черепица

120 кг на м2

Битумная черепица

70 кг на м2

Металлическая черепица

60 кг на м2

Далее нужно рассчитать, какую нагрузку оказывает отдельно тот или иной элемент конструкции. Например, кровля. Ее вес равномерно распределяется по тем сторонам фундамента, на которые опираются стропила. Если площадь проекции кровли поделить на площадь сторон, на которые оказывается нагрузка, и умножить на вес используемых материалов, получится искомое значение.

Чтобы определить, какую нагрузку оказывают стены, нужно их общий объем умножить на вес материалов и все это разделить на произведение длины и толщины фундамента.

Нагрузка, оказываемая перекрытиями, рассчитывается с учетом площади тех противоположных сторон основания, на которые они опираются. При этом нужно учитывать, что площадь перекрытий и площадь самого здания должны быть равны между собой. Здесь имеет значение также этажность здания и то, из какого материала выполнен пол на первом этаже – перекрытие подвала. Для расчета нагрузки нужно площадь каждого из перекрытий умножить на вес используемых материалов (см. таблицу) и разделить на площадь тех частей фундамента, на которые оказываются нагрузки.

Немаловажное значение имеют и нагрузки, оказываемые природными климатическими факторами – осадки, ветер и пр. Как пример – нагрузка от снега. Первоначально она сказывается на крыше и стенах, а через них – на фундаменте. Чтобы высчитать снеговую нагрузку, нужно определить, какую площадь занимает снежный покров. Берется величина, равная площади кровли.

Данное значение нужно разделить на площадь сторон основания, испытывающих нагрузку, и умножить на величину удельной снеговой нагрузки, которая определяется по карте.

Также нужно рассчитать и собственную нагрузку фундамента. Для этого берется его объем, умножается на плотность используемых при выполнении материалов, и делится на квадратный метр основания. Чтобы вычислить объем, нужно глубину залегания умножить на толщину, которая равна ширине стен.

Для определения нагрузок составляют схемы грузовых площадей и подсчитывают полезную нагрузку и собственную массу конструкций на 1м 2 .В каркасных зданиях нагрузка с выделенных грузовых площадей на уровне каждого перекрытия передается на отдельные колонны, а с колонн - на фундамент. В зданиях с продольными и поперечными несущими стенами подсчитывают нагрузку, приходящуюся на 1 м длины несущей стены на уровне отметки верха фундамента.

Грузовая площадь для ленточного фундамента равна произведению половины расстояния в свету между несущими элементами в одном направлении и расстояния между осями оконных проемов в другом направлении. Для несущих стен без проемов берется любая длина по стене, где возможен более полный учет различных нагрузок (рисунок 2).

Грузовая площадь для фундамента под колонну определяется как произведение половины расстояния между несущими элементами в одном

направлении и половины расстояния между несущими "элементами в другом направлении (рисунок 3). В каркасных сооружениях при расчете оснований и фундаментов учитывают нагрузки от собственной массы ригелей и колонн.

а– с продольными несущими стенами

б– с поперечными несущими стенами

Рисунок 2 – Грузовые площади на ленточные фундаменты зданий

Рисунок 3 – Грузовые площади на фундаменты каркасных зданий

При расчете оснований и фундаментов учитывают также нагрузки от собственной массы фундаментов и давления грунтов.

Подсчет нормативных и расчетных нагрузок ведется обычно в табличной форме (таблица 6).

5 Определение момента по обрезу фундамента

При проверке максимальных и минимальных напряжений по подошве фундамента следует учитывать момент от внецентренного приложения нагрузок первого и вышележащих этажей относительно оси, проходящей через центр тяжести фундамента (рисунок 4).

Рисунок 4 - Схема действия сил

Момент от этажных нагрузок M II), в кНм определяется по формуле

где N п oc т1 – постоянная погонная нагрузка на 1-й этаж, кН;

e 1 – эксцентриситет приложения погонных нагрузок на

1-й этаж, м;

N – сумма погонных постоянных и временных нагрузок на вышележащие этажи и собственная масса стены, кН;

e– эксцентриситет приложения нагрузок вышележащих этажей, м.

Т а б л и ц а 6 – Сбор нагрузок на фундамент по сечению I-I , грузовая площадь

Коэффициент

Коэффициент

Расчетная

На 1 м 2 грузовой

На грузовую

надежности

сочетания

нагрузок

по нагрузке, γ f

3-х слойный рубероидный

ковер на битум. основе

Ж/б плита

Чердачное перекрытие

цем-песч.стяжка, 40 мм

Пароизоляция

Утеплитель

Ж/б плита

Продолжение таблицы 6

Междуэтажное перекрытие

линолеум на мастике

стяжка из цем.-песч.

раствора, 40 мм

панель м/эт. перекрытия

Перегородки

Итого 1-й этаж:

Итого 5-и этажей:

Полезная на чердак

Полезная на перекрытие

1-го этажа

полезная на 5 этажей

с учетом к-та  n 1 = 0.67

Итого полная:

Итого полная на пог. м

Масса стены 1 пог. м

7,2*16,24=116,93

Итого полная на пог. м

Приложение А

Это один из важных этапов проектирования. Правильно собранные нагрузки позволяют эффективно законструировать фундамент, который будет прочно держать все здание.

Для того чтобы понять, как выполняется сбор нагрузок на фундамент, я продемонстрирую небольшой пример. По моему мнению, данные по сбору лучше всего оформлять в табличной форме. Но для начала давайте пройдемся по азам теоретической части.

Виды нагрузок

Виды нагрузок можно разделить на два типа: постоянные и временные. В зависимости от условий строительства и назначения здания на фундамент может передаваться:

Сюда относится собственный вес конструкций здания, собственный вес самого фундамента, давление от грунта на обрезах фундамента, а также боковое давление грунта и грунтовых вод.

, которая в зависимости от времени воздействия подразделяется на:

а) Длительная временная нагрузка, которая действует на фундамент достаточно долго. Сюда относят передачу нагрузки от оборудования, а также полезное давление от материалов (в складских помещениях) и прочих элементов наполнения помещения.

б) Кратковременная нагрузка, которая действует непродолжительное время. В этой категории находится полезная нагрузка на перекрытия от людей, в зависимости от назначения здания (поток в жилом здании и офисном помещении значительно отличается), нагрузки от кранов в промышленных зданиях, а также ветровые и снеговые нагрузки.

в) Особая нагрузка, которая возникает в особых случаях. Эта категория учитывает сейсмические нагрузки, аварийные ситуации, а также нагрузки от просадки здания в районах, где ведутся горные выработки.

Полноценно правильный расчет фундамента выполняется после сбора нагрузок на фундамент. При этом складываются наиболее неблагоприятные сочетания нагрузок, которые позволяют выявить поведение фундамента в максимально опасном положении.

Выполняя сбор нагрузок на фундамент необходимо все горизонтальные и вертикальные силы (кроме бокового давления грунта) приложить на обрезе фундамента.

Сбор нагрузок на фундамент. Пример

Конструктивная схема нашего здания представлена на картинке. Сооружение имеет несущие кирпичные стены по цифровым осям и самонесущие стены по буквенным. Монолитное перекрытие опирается только на стены по цифровым осям.

Самонесущая стена передает на фундамент только собственный вес, а вот несущие стены, кроме собственного веса, еще воспринимает давление от плит перекрытия и всего, что находится на плите. Возьмем плиту в пролете между осями 1 и 2. Она опирается только на две стены, поэтому вес от плиты будет равномерно передаваться: половина на стену по оси 1, а вторая половина на стену по оси 2. Аналогична ситуация с плитой в пролете осей 2 и 3. В итоге получается, что стена по оси 2 получает в два раза больше нагрузки от плиты перекрытия, чем стена по оси 1 и 3.

Выполняя сбор нагрузок на фундамент, следует понимать, что в зависимости от воспринимаемого давления, фундаменты будут отличаться по своей геометрии. Поэтому Определим, что фундамент под стены по осям 1 и 3 - будет первого типа, фундамент под стену по оси - будет второго типа, а фундамент под стены по осям А и Б - будет третьего типа.

Теперь приступаем к сбору нагрузок от конструкций на 1 м 2 . Для правильного понимания процесса сбора, данные заносим в таблицу:

Коэффициент надежности
Сбор нагрузки на 1 м 2 перекрытия первого этажа
Постоянная нагрузка:
200*2,5=500 1,1 500*1,1=550
2) Звукоизоляция толщиной 50 мм, 25 кг/м 3 50*25/1000=1,25 1,3 1,25*1,3=1,6
3) Цементно-песчаная стяжка, толщиной 20 мм, 1800 кг/м 3 20*1800/1000=36 1,3 36*1,3=46,8
4) Керамическая плитка, толщиной 4 мм, 1800 кг/м 3 4*1800/1000=7,2 1,3 7,2*1,3=9,4
Итого: 544,45 607,8
Временная нагрузка для жилых помещений 150 кг/м 2
(СНиП 2.01.07-85* "Нагрузки и воздействия")
150 1,3 150*1,3=195
Сбор нагрузки на 1 м 2 перекрытия второго этажа
Постоянная нагрузка:
1) Монолитное ж/б перекрытие, толщиной 200мм, 2500 кг/м 3
200*2500/1000=500 1,1 500*1,1=550
2) Цементно-песчаная стяжка, толщиной 20 мм, 1800 кг/м 3 20*1800/1000=36 1,3 36*1,3=46,8
3) Линолеум, толщиной 2 мм, 1800 кг/м 3 2*1800/1000=3,6 1,3 3,6*1,3=4,7
Итого: 539,6 622,5
70 1,3 70*1,3=91
Сбор нагрузки на 1 м 2 покрытия
Постоянная нагрузка:
1) Обрешетка из сосновой доски, толщиной 40 мм, 600 кг/м 3
40*600/1000=24 1,1 24*1,1=26,4
2) Металлочерепица 5 кг/м 2 5 1,1 5*1,1=5,5
3) Гидроизоляция 1,3 кг/м 2 1,3 1,1 1,3*1,1=1,4
4) Стропильная нога сечением 60х120 мм, шаг стропил - 1.1м, сосна - 600 кг/м 3 6*12*600/(1*11000)=3,9 1,1 3,9*1,1=4,3
Итого: 34,2 37,6
Временная нагрузка: 160 1,25 160*1,25=200
Постоянная нагрузка:
510*1800/1000=918 1,1 918*1,1=1009,8
2) Утеплитель, толщиной 60 мм, 55 кг/м 3 60*55/1000=3,3 1,1 3,3*1,1=3,6
3) Внешняя и внутренняя штукатурка стены из цементно-песчаного раствора, толщиной 30 мм, 1900 кг/м 3 2*30*1900/1000=114 1,1 102*1,1=125,4
Итого: 1035,3 1138,8
Постоянная нагрузка:
1) Стена из кирпича на тяжелом растворе, толщиной 510 мм, 1800 кг/м 3
510*1800/1000=918 1,1 918*1,1=1009,8
2) Штукатурка стены с двух сторон из цементно-песчаного раствора, толщиной 30 мм, 1900 кг/м 3 2*30*1900/1000=114 1,1 114*1,1=125,4
Итого: 1032 1135,2
Сбор нагрузки на фундамент первого типа (1 п.м.)
Постоянная нагрузка:
1035,3*7,5=7764,8 1138,8*7,5=8541
2) От перекрытия над первым этажом (Пролет в чистоте 4.2-0.51-0.255=3.435м) 544,45*3,435/2=935 607,8*3,435/2=1043,8
3) От перекрытия над вторым этажом (Пролет в чистоте 4.2-0.51-0.255=3.435м) 539,6*3,435/2=926,7 622,5*3,435/2=1069,1
4) От конструкции покрытия (длина наклонного стропила 5.8м) 34,2*5,8/2=99,2 37,6*5,8/2=109
Итого: 9725,7 10762,9
Временная нагрузка:
1) На перекрытие над первым этажом
150*3,435/2=257,6 195*3,435/2=334,9
2) На перекрытие над вторым этажом 70*3,435/2=120,2 91*3,435/2=156,3
160*5,8/2=464 200*5,8/2=580
Итого: 841,8 1071,2
Сбор нагрузки на фундамент второго типа (1 п.м.)
Постоянная нагрузка:
1) От веса стены, высотой 7.5м
1032*7,5=7740 1135,2*7,5=8514
2) От двух перекрытий над первым этажом (Пролет в чистоте 4.2-0.51-0.255=3.435м) 2*544,45*3,435/2=1870,2 2*607,8*3,435/2= 2087,8
3) От двух перекрытий над вторым этажом (Пролет в чистоте 4.2-0.51-0.255=3.435м) 2*539,6*3,435/2=1853,5 2*622,5*3,435/2=2138,2
4) От конструкции покрытия (длина каждого наклонного стропила 5.8м) 2*34,2*5,8/2=198,4 2*37,6*5,8/2=218,1
5) От деревянной стойки, высотой 2.3 м, с шагом 1м, из сосны, 600 кг/м 3 сечением 6х12см 6*12*600/(1*10000)*2,3 =9,9 1,1 9,9*1,1=10,9
Итого: 11672,0 12969,0
Временная нагрузка:
1) На два перекрытия над первым этажом
2*150*3,435/2=515,3 2*195*3,435/2=669,8
2) На два перекрытия над вторым этажом 2*70*3,435/2=240,5 2*91*3,435/2=312,6
3) Снеговая нагрузка на два стропила (длина наклонного стропила 5,8м) 2*160*5,8/2=928,0 2*200*5,8/2=1160,0
Итого: 1683,8 2142,4
Сбор нагрузки на фундамент третьего типа (1 п.м.)
Постоянная нагрузка:
1) От веса стены высотой 9.6 м
1035,3*9,6=9938,9 1138,8*9,6= 10932,5

Теперь можно сказать, что сбор нагрузок на фундамент выполнен. Можно приступать к выполнению расчета фундамента на прочность, определять глубину заложения и расчетные геометрические размеры.

Пример сбора нагрузок на фундамент довольно простой, но он показывает основную схему действия. В случае возникновения дополнительных вопросов, мы на них с удовольствием ответим в комментариях. Тем, кому нужен файл с таблицей расчетов - можете скачать документ: .


. Использование материала разрешается только с установлением активной обратной ссылки

Расчет нагрузки на фундамент – важный этап планирования будущего сооружения. Для этих целей можно использовать калькуляторы, которых с таким функционалом немного и для расчета нужно иметь определенные знания. Чтобы не допустить ошибок, лучше использовать специальные нормативные документы, в которых содержатся все правила расчетов. Дальше мы приведем полезную информацию и покажем понятный пример того, как правильно выполнить сбор нагрузки на свайный фундамент.

Из чего начать расчеты?

Чтобы с точностью выполнить сбор нагрузки, нужно поэтапно рассчитать массу элементов всего сооружения: крыши, стен и перегородок.

Вес крыши

Схема нагрузок снеговой массы на кровлю (равномерное, не симметричное, снеговой мешок)

Если сравнивать с другими частями конструкции, то массу кровли стоит рассчитывать по особому принципу:

  • При исчислении ее площади нельзя брать равное значение размерам дома: она больше него на 50 см с каждой стороны, поэтому к длине и ширине приплюсовывается 1 м.
  • На ее общий вес будут влиять осадки, выводить которые в отдельный пункт не имеет смысла.

Используя винтовые сваи для основания или сооружая столбчатый фундамент, все пытаются отказаться от массивных материалов и поступают правильно: такое основание не способно выдерживать большие нагрузки. Поэтому, как пример, рассмотрим несколько самых используемых материалов:

  • Синтетика. Гибкая кровля может иметь разный вес, но среднее значение равно 25 кг/м2 (при этом минимальное равно 8 кг/м2).
  • Металл. Для расчетов принято использовать показатель в 30 кг/м2. Правда в зависимости от вида покрытия, значение веса может варьироваться.
  • Шифер. Такой материал достаточно тяжелый: 50 кг/м2.
  • Натуральная кровля. Вес 1 м2 будет составлять всего 15 кг, но о долгой службе такого покрытия говорить не приходится.


Масса снега, воздействующего на поверхность крыши, а, следовательно, и на столбчатый свайный фундамент рассчитывается не по средним показателям, а по максимальным для определенного региона.

Вес стен


Если используются винтовые сваи или столбчатый фундамент, то скорее всего дом будет строиться из бруса или по каркасной технологии. Для менее габаритных построек могут применяться и другие материалы.

Вес материалов, которые могут выдержать винтовые сваи:

  • Стеновые панели. В таком случае масса на 1 м2 будет равной 40 кг. Используют для экономии на фундаменте и времени работы.
  • Брус. В среднем вес такого материала 90 кг/м2. Используется очень часто. Здание отлично выдерживает столбчатый фундамент, при сооружении которого использовались винтовые сваи.
  • Кирпич. Такой пример встречается редко, но иногда, в силу острой необходимости, имеет место в строительстве. Как правило, из него сооружают дома в 1 этаж – большего веса сваи выдержать просто не способны.

При расчетах учитывайте, что приведенные выше данные взяты на основе стен в 0.15 м. Имея точную ширину собственных стен не составит труда узнать их вес.

Вес перекрытий


Перед тем, как рассчитать нагрузку на фундамент, нужно учесть и массу перекрытий. Как уже неоднократно говорилось, используя столбчатый опорный элемент или винтовые сваи, пытаются снизить нагрузку на основание. Поэтому при сооружении домов на свайном фундаменте для перекрытий используют:

  • Монолит. Масса: около 500 кг/м2. Применяется исключительно в виде цоколя: прибавляет нагрузки и винтовые элементы могут его не выдержать. Срок службы: более века.
  • Дерево с утеплителем. При использовании в качестве цоколя будет иметь вес в 130 кг/м2, а в качестве перегородки этажей – не больше 80 кг/м2. Этот вариант имеет наилучшие характеристики экологичности, но служит мало.
  • Пустотная плита. Не используются как цоколь (не способны выдержать большую нагрузку). Масса: 300 кг. Такой пример веса для междуэтажного использования достаточно тяжелый, но показатели времени службы (больше полвека) заставляют задуматься.

Если хочется выбрать оптимальный вариант времени службы и прочности, то лучше выбрать пустотную плиту, но это требует дополнительного укрепления основания.

Пример: сбор нагрузки на свайное основание


Изучив необходимую информацию, можно начинать проводить расчеты.

Как пример, возьмем дом с такими характеристиками:

  • Количество этажей: 1.
  • Периметр: 20 на 30 м.
  • Длина перестенков: 22 м.
  • Материал дома: дерево.
  • Материал перекрытий: дерево с утеплителем.
  • Материал кровли: натуральные материалы.
  • Расположение: центральная полоса (100 кг м/2 – макс. масса снега).

Сбор нагрузки начинается с расчета площади стен (Пст). Учтите, что внешние шире внутренних в 3 раза. Поэтому Пст = Пвтс + Пвнс.

Пвнс = Пр х 3 х Вс (периметр х 3 х высота стен). Пвнс = ((20+30) х 2) х 3 х 2.7 = 810 м2.

Пвтс = Дс х Вс (длина стен х высота стен). Пвтс = 22 х 2.7 = 160.38 м2

До = Дс + Пр = 22 +100 = 125 м.

Получив значение площади стен, можно проводить сбор их массы:

Мст = Пст х Мбр – масса бруса = 970.38 х 90 = 87 334.2 кг.


Сбор веса перекрытий аналогичен, только пример расчета подразумевает использование горизонтальных данных:

Мпр = Пвнс х Мвнс + Пвтс х Мвтс = 20 х 30 х 80 + 20 х 30 х 130 = 48 000 + 78 000 = 126 000 кг.

Мкр = Мкм + Мос (вес кровельных материалов + вес осадков)

Мкм = (а + 1) х (в + 1) х 15 = 21 х 31 х 15 = 9 765 кг.

Мос = (а + 1) х (в + 1) х 100 = 21 х 32 х 100 = 67 200 кг.

Мкр = 9 765 + 67 200 = 76 965 кг.

Теперь можно узнать общий вес дома:

Мд = Мст + Мпр + Мкр = 87 334.2 + 126 000 + 76 965 = 290 299,2 кг.

Расчет соответствия фундамента массе сооружения


Используя значение массы всего дома, следует узнать, смогут ли винтовые сваи выдержать его массу.

Возьмем уровень сопротивления сухой глины из таблицы ниже. Он равен 25 000 кг/м2.

Сопротивление суглинистых грунтов

Вес бетона для свай постоянный – 2400 кг/м3.

Вес наших опор: 2.5 м. Диаметр: 0.5 м.

Измеряем площадь соприкосновения с грунтом:

3.14 х 0.05 = 0.157 м2. Переводим в объем и получаем 0.314 м3

Мопоры = 0.314 х 2400 = 753.6 кг

Будет установлена 1 опора на каждый метр длины (До х 1 = 125 опор)

М всех опор = 125 х 753.6 = 94 200 кг

Вес дома с основанием = 94 200 + 290 299,2 = 384 499.2


Площадь всех опор 125 х 0.314 = 39.25 м2, что позволяет выдерживать массу сооружения = 39.25 х 25 000 (сопротивление глины) = 981 250.

Из приведенного примера получается, что расчет нагрузки на основание дал понять о неверном выборе высоты погружения и диаметра свай. Основание способно выдерживать дом с массой в 2.5 раза больше. Чтобы найти оптимальные данные, нужно провести сбор нагрузки еще раз, предварительно уменьшив длину и диаметр свай.

Как видите, выполнить расчет нагрузки на фундамент и рассчитать соответствие запланированного основания достаточно просто, особенной если речь идет об использовании свайных элементов. Но такое основание лучше использовать только для возведения легких сооружений.

Расчет нагрузки для фундамента из винтовых свай обновлено: Февраль 26, 2018 автором: zoomfund

Расчет ленточного фундамента состоит из двух основных этапов – сбора нагрузок и определения несущей способности грунта. Соотношение нагрузки на фундамент к несущей способности грунта определит требуемую ширину ленты.

Толщина стеновой части принимается в зависимости от конструктива наружных стен. Армирование обычно назначается конструктивно (от четырех стержней Ф10мм для одноэтажных газоблочных/каркасных и до шести продольных стержней Ф12мм для кирпичных зданий в два этажа с мансардой). Расчет диаметров и количества арматурных стержней выполняется только для сложных геологических условий.

Абсолютное большинство он-лайновых калькуляторов фундаментов позволяют всего лишь определить требуемое количество бетона, арматуры и опалубки при заранее известных габаритных параметрах фундамента. Немногие калькуляторы могут похвастаться сбором нагрузок и/или определением несущей способности грунта. К сожалению, алгоритмы работы таких калькуляторов не всегда известны, а интерфейсы зачастую непонятны.

Точный результат можно получить с помощью методики расчёта, изложенный в строительных нормах и правилах. Например, СП 20.13330.2011 «Нагрузки и воздействия», СП 22.13330.2011 «Основания зданий и сооружений». С помощью первого документа будем собирать нагрузки, второго – определять несущую способность грунта. Эти своды правил представляют собой актуализированные (обновленные) редакции старых советских СНиПов.

Сбор нагрузок

Сбор нагрузок осуществляется суммированием их каждого вида (постоянные, длительные, кратковременные) с умножением на грузовую площадь. При этом учитываются коэффициенты надежности по нагрузке.

К постоянным нагрузкам относят собственный вес конструкций. К длительным – вес не несущих перегородок (применительно к частному строительству). Кратковременными нагрузками является мебель, люди, снег. Ветровыми нагрузками можно пренебречь, если речь не идет о строительстве высокого дома с узкими габаритами в плане. Разделение нагрузок на постоянные/временные необходимо для работы с сочетаниями, которыми для простых частных строений можно пренебречь, суммируя все нагрузки без понижающих коэффициентов сочетания.

По своей сути сбор нагрузок представляет собой ряд арифметических действий. Габариты конструкций умножаются на объемный вес (плотность), коэффициент надежности по нагрузке. Равномерно распределенные нагрузки (полезная, снеговая, вес горизонтальных конструкций) формируют опорные реакции на нижележащих конструкциях пропорционально грузовой площади.

Сбор нагрузок разберем на примере частного дома 10х10, один этаж с мансардой, стены из газоблока D400 толщиной 400мм, кровля симметричная двускатная, перекрытие из сборных железобетонных плит.

Схема грузовых площадей для несущих стен в уровне перекрытия первого этажа (в плане.

Схема грузовых площадей для несущих стен в уровне кровли (в разрезе.

Некоторую сложность представляет собой сбор снеговой нагрузки. Даже для простой кровли согласно СП 20.13330.2011 следует рассматривать три варианта загружения:

Вариант 1 рассматривает равномерное выпадение снега, вариант 2 – не симметричное, вариант 3 – образование снегового мешка. Для упрощения расчёта и для формирования некоторого запаса несущей способности фундаментов (особенно он необходим для примерного расчёта) можно принять максимальный коэффициент 1,4 для всей кровли.

Конечным результатом для сбора нагрузок на ленточный фундамент должна быть линейно распределенная (погонная вдоль стен) нагрузка, действующая в уровне подошвы фундамента на грунт.

Таблица сбора равномерно распределенных нагрузок

Всего: 1076 кг/м2

Нормативное значение снеговой нагрузки зависит от региона строительства. Его можно определить по приложению «Ж» СП 20.13330.2011. Собственные веса кровли, стропил, напольного перекрытия и перегородок взяты ориентировочно, для примера. Эти значения должны определяться непосредственным вычислением веса того или иного конструктива, или приближенным определением по справочной литературе (или в любой поисковой системе по запросу «собственный вес ххх», где ххх – наименование материала/конструкции).

Рассмотрим стену по оси «Б». Ширина грузовой площади составляет 5200мм, то есть 5,2м. Умножаем 1076кг/м2*5,2м=5595кг/м.

Но это ещё не вся нагрузка. Нужно добавить собственный вес стены (надземной и подземной части), подошвы фундамента (ориентировочно можно принять её ширину 60см) и вес грунта на обрезах фундамента.

Для примера возьмем высоту подземной части стены из бетона в 1м, толщина 0,4м. Объемный вес неармированного бетона 2400кг/м3, коэффициент надежности по нагрузке 1,1: 0,4м*2400кг/м3*1м*1,1=1056кг/м.

Верхнюю часть стены примем в примере равной 2,7м из газобетона D400 (400кг/м3) той же толщины: 0,4м*400кг/м3*2,7м*1,1=475кг/м.

Ширина подошвы условно принята 600мм, за вычетом стены в 400мм получаем свесы общей суммой 200мм. Плотность грунта обратной засыпки принимается равной 1650кг/м3 при коэффициенте 1,15 (высота толща определится как 1м подземной части стены минус толщина конструкции пола первого этажа, пусть будет в итоге 0,8м): 0,2м**1650кг/м3*0,8м*1,15=304кг/м.

Осталось определить вес самой подошвы при её обычной высоте (толщине) в 300мм и весе армированного бетона 2500кг/м3: 0,3м*0,6м*2500кг/м3*1,1=495кг/м.

Суммируем все эти нагрузки: 5595+1056+475+304+495=7925кг/м.

Более подробная информация о нагрузках, коэффициентах и других тонкостях изложена в СП 20.13330.2011.

Расчёт несущей способности грунта

Для расчёта несущей способности грунта понадобятся физико-механические характеристики инженерно-геологических элементов (ИГЭ), формирующих грунтовый массив участка строительства. Эти данные берутся из отчета об инженерно-геологических изысканиях. Оплата такого отчёта зачастую окупается сторицей, особенно это касается неблагоприятных грунтовых условий.

Среднее давление под подошвой фундамента не должно превышать расчётное сопротивление основания, определяемого по формуле:

Для этой формулы существует ряд ограничений по глубине заложения фундаментов, их размеров и т.д. Более подробная информация изложена в разделе 5 СП 22.13330.2011. Ещё раз подчеркнем, что для применения данной расчётной методики необходим отчет об инженерно-геологических изысканиях.

В остальных случаях с некоторой степенью приближенности можно воспользоваться усредненными значениями в зависимости от типов ИГЭ (супеси, суглинки, глины и т.п.), приведенными в СП 22.133330.2011:

В рамках примера зададимся суглинистым грунтом с коэффициентом пористости 0,7 при значении числа пластичности 0,5 – при интерполяции это даст значение R=215кПа или 2,15кг/см2. Самостоятельно определить пористость и число пластичности очень сложно, для приблизительной оценки стоит оплатить взятие хотя бы одного образца грунта со дна траншеи специалистом лаборатории, выполняющей изыскания. В общем и целом для суглинистых грунтов (самый распространенный тип) чем выше влажность, тем выше значение числа пластичности. Чем легче грунт уплотняется, тем выше коэффициент пористости.

Определение требуемой ширины подошвы («подушки») ленточного фундамента

Требуемая ширина подошвы определяется отношением расчетного сопротивления основания к линейно распределенной нагрузке.

Ранее мы определили погонную нагрузку, действующую в уровне подошвы фундамента – 7925кг/м. Принятое сопротивление грунта у нас составило 2,15кг/см2. Приведём нагрузку в те же единицы измерения (метры в сантиметры): 7925кг/м=79,25кг/см.

Ширина подошвы ленточного фундамента составит: (79,25кг/см) / (2,15 кг/см2)=36,86см.

Ширину фундамента обычно принимают кратной 10см, то есть округляем в большую сторону до 40см. Полученная ширина фундамента характерна для легких домов, возводимых на достаточно плотных суглинистых грунтах. Однако по конструктивным соображениям в некоторых случаях фундамент делают шире. Например, стена будет облицовываться фасадным кирпичом с утеплением толщиной 50мм. Требуемая толщина цокольной части стены составит 40см газобетона + 12см облицовки + 5см утеплителя = 57см. Газобетонную кладку на 3-5см можно «свесить» по внутренней грани стены, что позволит уменьшить толщину цокольной части стены. Ширина подошвы должна быть не менее этой толщины.

Осадка фундамента

Ещё одной жестко нормируемой величиной при расчёте ленточного фундамента является его осадка. Её определяют методом элементарного суммирования, для которого вновь понадобятся данные из отчета об инженерно-геологических изысканиях.

Исходя из опыта строительства и проектирования известно, что для инженерно-геологических условий, характерных отсутствием грунтов с модулем деформации менее 10МПа, слабых подстилающих слоев, макропористых ИГЭ, ряда специфичных грунтов, то есть при относительно благоприятных условиях расчёт осадки не приводит к необходимости увеличения ширины подошвы фундамента после расчёта по несущей способности. Запас по расчётной осадке по отношению к максимально допустимой обычно получается в несколько раз. Для более сложных геологических условий расчёт и проектирование фундаментов должен выполняться квалифицированным специалистом после проведения инженерных изысканий.

Заключение

Расчёт ленточного фундамента выполняется согласно действующим строительным нормам и правилам, в первую очередь СП 22.13330.2011. Точный расчёт фундамента по несущей способности и его осадки невозможен без отчета об инженерно-геологических изысканиях.

Приближенным образом требуемая ширина ленточного фундамента может быть определена на основании усредненных показателей несущей способности тех или иных видов грунтов, приведенных в СП 22.13330.2011. Расчёт осадки обычно не показателен для простых, однородных геологических условий в рамках «частного» строительства (легких строений малой этажности).

Принятие решения о самостоятельном, приближенном, неквалифицированном расчёте ширины подошвы ленточного фундамента владельцем будущего строения неоспоримым образом возлагает всю возможную ответственность на него же.

Целесообразность применения он-лайн калькуляторов вызывает обоснованные сомнения. Правильный результат можно получить, используя методики расчёта, приведенные в нормах и справочной литературе. Готовые калькуляторы лучше применять для подсчета требуемого количества материалов, а не для определения ширины подошвы фундамента.

Точный расчет ленточного фундамент не так уж прост и требует наличия данных по грунтам, на которые он опирается, в виде отчета по инженерно-геологическим изысканиям. Заказ и оплата изысканий, а также кропотливый расчет окупятся сторицей правильно рассчитанным фундаментом, на который не будут потрачены лишние деньги, но который выдержит соответствующие нагрузки и не приведет к развитию недопустимых деформаций здания.